Jan M. Brendel , Jonathan Walterspiel , Florian Hagen , Jens Kübler , Jean-François Paul , Konstantin Nikolaou , Meinrad Gawaz , Simon Greulich , Patrick Krumm , Moritz Winkelmann
{"title":"使用光子计数 CT 和人工智能在经导管主动脉瓣置换术检查过程中评估冠状动脉疾病。","authors":"Jan M. Brendel , Jonathan Walterspiel , Florian Hagen , Jens Kübler , Jean-François Paul , Konstantin Nikolaou , Meinrad Gawaz , Simon Greulich , Patrick Krumm , Moritz Winkelmann","doi":"10.1016/j.diii.2024.01.010","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><p>The purpose of this study was to evaluate the capabilities of photon-counting (PC) CT combined with artificial intelligence-derived coronary computed tomography angiography (PC-CCTA) stenosis quantification and fractional flow reserve prediction (FFRai) for the assessment of coronary artery disease (CAD) in transcatheter aortic valve replacement (TAVR) work-up.</p></div><div><h3>Materials and methods</h3><p>Consecutive patients with severe symptomatic aortic valve stenosis referred for pre-TAVR work-up between October 2021 and June 2023 were included in this retrospective tertiary single-center study. All patients underwent both PC-CCTA and ICA within three months for reference standard diagnosis. PC-CCTA stenosis quantification (at 50% level) and FFRai (at 0.8 level) were predicted using two deep learning models (CorEx, Spimed-AI). Diagnostic performance for global CAD evaluation (at least one significant stenosis ≥ 50% or FFRai ≤ 0.8) was assessed.</p></div><div><h3>Results</h3><p>A total of 260 patients (138 men, 122 women) with a mean age of 78.7 ± 8.1 (standard deviation) years (age range: 51–93 years) were evaluated. Significant CAD on ICA was present in 126/260 patients (48.5%). Per-patient sensitivity, specificity, positive predictive value, negative predictive value, and diagnostic accuracy were 96.0% (95% confidence interval [CI]: 91.0–98.7), 68.7% (95% CI: 60.1–76.4), 74.3 % (95% CI: 69.1–78.8), 94.8% (95% CI: 88.5–97.8), and 81.9% (95% CI: 76.7–86.4) for PC-CCTA, and 96.8% (95% CI: 92.1–99.1), 87.3% (95% CI: 80.5–92.4), 87.8% (95% CI: 82.2–91.8), 96.7% (95% CI: 91.7–98.7), and 91.9% (95% CI: 87.9–94.9) for FFRai. Area under the curve of FFRai was 0.92 (95% CI: 0.88–0.95) compared to 0.82 for PC-CCTA (95% CI: 0.77–0.87) (<em>P</em> < 0.001). FFRai-guidance could have prevented the need for ICA in 121 out of 260 patients (46.5%) <em>vs.</em> 97 out of 260 (37.3%) using PC-CCTA alone (<em>P</em> < 0.001).</p></div><div><h3>Conclusion</h3><p>Deep learning-based photon-counting FFRai evaluation improves the accuracy of PC-CCTA ≥ 50% stenosis detection, reduces the need for ICA, and may be incorporated into the clinical TAVR work-up for the assessment of CAD.</p></div>","PeriodicalId":48656,"journal":{"name":"Diagnostic and Interventional Imaging","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2211568424000354/pdfft?md5=08a79564cba5d15db35d4e6c9db76424&pid=1-s2.0-S2211568424000354-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Coronary artery disease evaluation during transcatheter aortic valve replacement work-up using photon-counting CT and artificial intelligence\",\"authors\":\"Jan M. Brendel , Jonathan Walterspiel , Florian Hagen , Jens Kübler , Jean-François Paul , Konstantin Nikolaou , Meinrad Gawaz , Simon Greulich , Patrick Krumm , Moritz Winkelmann\",\"doi\":\"10.1016/j.diii.2024.01.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Purpose</h3><p>The purpose of this study was to evaluate the capabilities of photon-counting (PC) CT combined with artificial intelligence-derived coronary computed tomography angiography (PC-CCTA) stenosis quantification and fractional flow reserve prediction (FFRai) for the assessment of coronary artery disease (CAD) in transcatheter aortic valve replacement (TAVR) work-up.</p></div><div><h3>Materials and methods</h3><p>Consecutive patients with severe symptomatic aortic valve stenosis referred for pre-TAVR work-up between October 2021 and June 2023 were included in this retrospective tertiary single-center study. All patients underwent both PC-CCTA and ICA within three months for reference standard diagnosis. PC-CCTA stenosis quantification (at 50% level) and FFRai (at 0.8 level) were predicted using two deep learning models (CorEx, Spimed-AI). Diagnostic performance for global CAD evaluation (at least one significant stenosis ≥ 50% or FFRai ≤ 0.8) was assessed.</p></div><div><h3>Results</h3><p>A total of 260 patients (138 men, 122 women) with a mean age of 78.7 ± 8.1 (standard deviation) years (age range: 51–93 years) were evaluated. Significant CAD on ICA was present in 126/260 patients (48.5%). Per-patient sensitivity, specificity, positive predictive value, negative predictive value, and diagnostic accuracy were 96.0% (95% confidence interval [CI]: 91.0–98.7), 68.7% (95% CI: 60.1–76.4), 74.3 % (95% CI: 69.1–78.8), 94.8% (95% CI: 88.5–97.8), and 81.9% (95% CI: 76.7–86.4) for PC-CCTA, and 96.8% (95% CI: 92.1–99.1), 87.3% (95% CI: 80.5–92.4), 87.8% (95% CI: 82.2–91.8), 96.7% (95% CI: 91.7–98.7), and 91.9% (95% CI: 87.9–94.9) for FFRai. Area under the curve of FFRai was 0.92 (95% CI: 0.88–0.95) compared to 0.82 for PC-CCTA (95% CI: 0.77–0.87) (<em>P</em> < 0.001). FFRai-guidance could have prevented the need for ICA in 121 out of 260 patients (46.5%) <em>vs.</em> 97 out of 260 (37.3%) using PC-CCTA alone (<em>P</em> < 0.001).</p></div><div><h3>Conclusion</h3><p>Deep learning-based photon-counting FFRai evaluation improves the accuracy of PC-CCTA ≥ 50% stenosis detection, reduces the need for ICA, and may be incorporated into the clinical TAVR work-up for the assessment of CAD.</p></div>\",\"PeriodicalId\":48656,\"journal\":{\"name\":\"Diagnostic and Interventional Imaging\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2211568424000354/pdfft?md5=08a79564cba5d15db35d4e6c9db76424&pid=1-s2.0-S2211568424000354-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diagnostic and Interventional Imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211568424000354\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostic and Interventional Imaging","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211568424000354","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Coronary artery disease evaluation during transcatheter aortic valve replacement work-up using photon-counting CT and artificial intelligence
Purpose
The purpose of this study was to evaluate the capabilities of photon-counting (PC) CT combined with artificial intelligence-derived coronary computed tomography angiography (PC-CCTA) stenosis quantification and fractional flow reserve prediction (FFRai) for the assessment of coronary artery disease (CAD) in transcatheter aortic valve replacement (TAVR) work-up.
Materials and methods
Consecutive patients with severe symptomatic aortic valve stenosis referred for pre-TAVR work-up between October 2021 and June 2023 were included in this retrospective tertiary single-center study. All patients underwent both PC-CCTA and ICA within three months for reference standard diagnosis. PC-CCTA stenosis quantification (at 50% level) and FFRai (at 0.8 level) were predicted using two deep learning models (CorEx, Spimed-AI). Diagnostic performance for global CAD evaluation (at least one significant stenosis ≥ 50% or FFRai ≤ 0.8) was assessed.
Results
A total of 260 patients (138 men, 122 women) with a mean age of 78.7 ± 8.1 (standard deviation) years (age range: 51–93 years) were evaluated. Significant CAD on ICA was present in 126/260 patients (48.5%). Per-patient sensitivity, specificity, positive predictive value, negative predictive value, and diagnostic accuracy were 96.0% (95% confidence interval [CI]: 91.0–98.7), 68.7% (95% CI: 60.1–76.4), 74.3 % (95% CI: 69.1–78.8), 94.8% (95% CI: 88.5–97.8), and 81.9% (95% CI: 76.7–86.4) for PC-CCTA, and 96.8% (95% CI: 92.1–99.1), 87.3% (95% CI: 80.5–92.4), 87.8% (95% CI: 82.2–91.8), 96.7% (95% CI: 91.7–98.7), and 91.9% (95% CI: 87.9–94.9) for FFRai. Area under the curve of FFRai was 0.92 (95% CI: 0.88–0.95) compared to 0.82 for PC-CCTA (95% CI: 0.77–0.87) (P < 0.001). FFRai-guidance could have prevented the need for ICA in 121 out of 260 patients (46.5%) vs. 97 out of 260 (37.3%) using PC-CCTA alone (P < 0.001).
Conclusion
Deep learning-based photon-counting FFRai evaluation improves the accuracy of PC-CCTA ≥ 50% stenosis detection, reduces the need for ICA, and may be incorporated into the clinical TAVR work-up for the assessment of CAD.
期刊介绍:
Diagnostic and Interventional Imaging accepts publications originating from any part of the world based only on their scientific merit. The Journal focuses on illustrated articles with great iconographic topics and aims at aiding sharpening clinical decision-making skills as well as following high research topics. All articles are published in English.
Diagnostic and Interventional Imaging publishes editorials, technical notes, letters, original and review articles on abdominal, breast, cancer, cardiac, emergency, forensic medicine, head and neck, musculoskeletal, gastrointestinal, genitourinary, interventional, obstetric, pediatric, thoracic and vascular imaging, neuroradiology, nuclear medicine, as well as contrast material, computer developments, health policies and practice, and medical physics relevant to imaging.