Chun-Feng Lu, Ye Dai, Yun Tao, Qiu-Yi Yin, Yan Jiang, Ting-Wang Jiang
{"title":"雷公藤内酯负载固体脂质纳米凝胶:制备与体外评估","authors":"Chun-Feng Lu, Ye Dai, Yun Tao, Qiu-Yi Yin, Yan Jiang, Ting-Wang Jiang","doi":"10.1166/jbn.2024.3781","DOIUrl":null,"url":null,"abstract":"In order to topically deliver triptolide (TPL), we sought to develop and characterize solid lipid nano-particles based gel (SLNs-gel) before we investigated its inhibitory activity on HaCaT cells. Preparation of TPL-loaded SLNs (TPL-SLNs) was performed with a method involving melt-emulsion\n ultra-sonication and solidification at low temperature. The determined characteristics of TPL-SLNs were particle size (PS), encapsulation efficiency (EE), zeta potential (ZP), microscopic mor phology and release of TPL In-Vitro. After TPL-SLNs have been formulated into gel, we used\n the Franz diffusion cell method to evaluate the skin permeation and penetration characteristics of TPL-SLNs-gel on rat’s skin. Imaging results showed that particles of TPL-SLNs were homogeneous and well-dispersed. Meanwhile, the PS and ZP of TPL-SLNs were 89.21 ± 9.68 nm and −41.3\n ± 6.23 mV, respectively, with EE being 89.3%. Also, we observed a significant improvement in pattern of In-Vitro TPL release from TPL-SLNs compared to free TPL. Furthermore, the cumulative penetration of TPL-SLNs-gel was higher (5.28 times) compared to free TPL. Besides, TPL-SLNs-gel\n demonstrated substantial higher cytostatic activity on HaCaT cells comparable to both free TPL and TPL-SLNs. Altogether, it is evident that a delivery system like SLNs-gel can potentially increase the transdermal bioavailability of TPL for effective inhibition of proliferous HaCaT cells","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"49 7","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Triptolide-Loaded Solid Lipid Nanogel: Preparation and In-Vitro Evaluation\",\"authors\":\"Chun-Feng Lu, Ye Dai, Yun Tao, Qiu-Yi Yin, Yan Jiang, Ting-Wang Jiang\",\"doi\":\"10.1166/jbn.2024.3781\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to topically deliver triptolide (TPL), we sought to develop and characterize solid lipid nano-particles based gel (SLNs-gel) before we investigated its inhibitory activity on HaCaT cells. Preparation of TPL-loaded SLNs (TPL-SLNs) was performed with a method involving melt-emulsion\\n ultra-sonication and solidification at low temperature. The determined characteristics of TPL-SLNs were particle size (PS), encapsulation efficiency (EE), zeta potential (ZP), microscopic mor phology and release of TPL In-Vitro. After TPL-SLNs have been formulated into gel, we used\\n the Franz diffusion cell method to evaluate the skin permeation and penetration characteristics of TPL-SLNs-gel on rat’s skin. Imaging results showed that particles of TPL-SLNs were homogeneous and well-dispersed. Meanwhile, the PS and ZP of TPL-SLNs were 89.21 ± 9.68 nm and −41.3\\n ± 6.23 mV, respectively, with EE being 89.3%. Also, we observed a significant improvement in pattern of In-Vitro TPL release from TPL-SLNs compared to free TPL. Furthermore, the cumulative penetration of TPL-SLNs-gel was higher (5.28 times) compared to free TPL. Besides, TPL-SLNs-gel\\n demonstrated substantial higher cytostatic activity on HaCaT cells comparable to both free TPL and TPL-SLNs. Altogether, it is evident that a delivery system like SLNs-gel can potentially increase the transdermal bioavailability of TPL for effective inhibition of proliferous HaCaT cells\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\"49 7\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1166/jbn.2024.3781\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1166/jbn.2024.3781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Triptolide-Loaded Solid Lipid Nanogel: Preparation and In-Vitro Evaluation
In order to topically deliver triptolide (TPL), we sought to develop and characterize solid lipid nano-particles based gel (SLNs-gel) before we investigated its inhibitory activity on HaCaT cells. Preparation of TPL-loaded SLNs (TPL-SLNs) was performed with a method involving melt-emulsion
ultra-sonication and solidification at low temperature. The determined characteristics of TPL-SLNs were particle size (PS), encapsulation efficiency (EE), zeta potential (ZP), microscopic mor phology and release of TPL In-Vitro. After TPL-SLNs have been formulated into gel, we used
the Franz diffusion cell method to evaluate the skin permeation and penetration characteristics of TPL-SLNs-gel on rat’s skin. Imaging results showed that particles of TPL-SLNs were homogeneous and well-dispersed. Meanwhile, the PS and ZP of TPL-SLNs were 89.21 ± 9.68 nm and −41.3
± 6.23 mV, respectively, with EE being 89.3%. Also, we observed a significant improvement in pattern of In-Vitro TPL release from TPL-SLNs compared to free TPL. Furthermore, the cumulative penetration of TPL-SLNs-gel was higher (5.28 times) compared to free TPL. Besides, TPL-SLNs-gel
demonstrated substantial higher cytostatic activity on HaCaT cells comparable to both free TPL and TPL-SLNs. Altogether, it is evident that a delivery system like SLNs-gel can potentially increase the transdermal bioavailability of TPL for effective inhibition of proliferous HaCaT cells
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.