共生体:跨界的月光功能

Chongyang Ma , Xiaoyan Zhang , Xinyue Bao , Xiaohong Zhu
{"title":"共生体:跨界的月光功能","authors":"Chongyang Ma ,&nbsp;Xiaoyan Zhang ,&nbsp;Xinyue Bao ,&nbsp;Xiaohong Zhu","doi":"10.1016/j.ncrops.2024.100015","DOIUrl":null,"url":null,"abstract":"<div><p>Throughout legume–rhizobium symbiosis, nitrogen fixation occurs within the symbiosome, a membrane-bound organelle-like structure found in nodule cells. The symbiosome represents a temporary organelle in which rhizobia-encoded nitrogenase catalyzes dinitrogen conversion to ammonia in an oxygen-regulated microenvironment. Investigating symbiosome biology will undoubtedly improve our understanding of nitrogen fixation mechanisms and highlight novel targets for improving nitrogen fixation efficiency. Recent research advancements have taken place on regulatory aspects of symbiosome generation and functions, but obtaining spatiotemporally resolved symbiosome proteome and metabolomes, as well as tracking and deciphering its intracellular communication, is challenging. As a symbiotic interface, the symbiosome membrane proteome is largely composed of plant-derived proteins, while the symbiosome space between the symbiosome membrane and bacteria consists of proteins and metabolites from the rhizobium and plant. In the unique microenvironment, symbiosome proteins likely perform multiple tasks via their moonlighting functions, accounting for the many unsolved questions associated with symbiotic nitrogen fixation. In this review, we outline the current knowledge regarding the composition and potential moonlighting functions of symbiosome proteins. We highlight our current understanding of emergent symbiosome properties closely tied to nitrogen fixation activity. Ultimately, we discuss the challenges and opportunities for discovering new paradigms in symbiosome biology using recently developed technologies.</p></div>","PeriodicalId":100953,"journal":{"name":"New Crops","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949952624000050/pdfft?md5=a165278179ea71d9734a2e7246eedc71&pid=1-s2.0-S2949952624000050-main.pdf","citationCount":"0","resultStr":"{\"title\":\"In the symbiosome: Cross-kingdom dating under the moonlight\",\"authors\":\"Chongyang Ma ,&nbsp;Xiaoyan Zhang ,&nbsp;Xinyue Bao ,&nbsp;Xiaohong Zhu\",\"doi\":\"10.1016/j.ncrops.2024.100015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Throughout legume–rhizobium symbiosis, nitrogen fixation occurs within the symbiosome, a membrane-bound organelle-like structure found in nodule cells. The symbiosome represents a temporary organelle in which rhizobia-encoded nitrogenase catalyzes dinitrogen conversion to ammonia in an oxygen-regulated microenvironment. Investigating symbiosome biology will undoubtedly improve our understanding of nitrogen fixation mechanisms and highlight novel targets for improving nitrogen fixation efficiency. Recent research advancements have taken place on regulatory aspects of symbiosome generation and functions, but obtaining spatiotemporally resolved symbiosome proteome and metabolomes, as well as tracking and deciphering its intracellular communication, is challenging. As a symbiotic interface, the symbiosome membrane proteome is largely composed of plant-derived proteins, while the symbiosome space between the symbiosome membrane and bacteria consists of proteins and metabolites from the rhizobium and plant. In the unique microenvironment, symbiosome proteins likely perform multiple tasks via their moonlighting functions, accounting for the many unsolved questions associated with symbiotic nitrogen fixation. In this review, we outline the current knowledge regarding the composition and potential moonlighting functions of symbiosome proteins. We highlight our current understanding of emergent symbiosome properties closely tied to nitrogen fixation activity. Ultimately, we discuss the challenges and opportunities for discovering new paradigms in symbiosome biology using recently developed technologies.</p></div>\",\"PeriodicalId\":100953,\"journal\":{\"name\":\"New Crops\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2949952624000050/pdfft?md5=a165278179ea71d9734a2e7246eedc71&pid=1-s2.0-S2949952624000050-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Crops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949952624000050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Crops","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949952624000050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在豆科植物与根瘤菌的共生过程中,固氮作用发生在共生体中,这是一种在结核细胞中发现的膜结合细胞器样结构。共生体是一个临时细胞器,其中根瘤菌编码的氮酶在氧调节的微环境中催化二氮转化为氨。对共生体生物学的研究无疑将增进我们对固氮机制的了解,并突出提高固氮效率的新目标。最近,有关共生体生成和功能调控方面的研究取得了进展,但获得时空分辨的共生体蛋白质组和代谢组,以及跟踪和破译其胞内通讯仍具有挑战性。作为共生界面,共生体膜蛋白质组主要由植物源蛋白质组成,而共生体膜与细菌之间的共生体空间则由根瘤菌和植物的蛋白质和代谢产物组成。在独特的微环境中,共生体蛋白可能通过其兼职功能执行多种任务,这也是与共生固氮相关的许多未解之谜的原因所在。在这篇综述中,我们概述了目前有关共生体蛋白的组成和潜在月光功能的知识。我们强调了目前对与固氮活动密切相关的共生体新特性的理解。最后,我们将讨论利用最新开发的技术发现共生体生物学新范例所面临的挑战和机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In the symbiosome: Cross-kingdom dating under the moonlight

Throughout legume–rhizobium symbiosis, nitrogen fixation occurs within the symbiosome, a membrane-bound organelle-like structure found in nodule cells. The symbiosome represents a temporary organelle in which rhizobia-encoded nitrogenase catalyzes dinitrogen conversion to ammonia in an oxygen-regulated microenvironment. Investigating symbiosome biology will undoubtedly improve our understanding of nitrogen fixation mechanisms and highlight novel targets for improving nitrogen fixation efficiency. Recent research advancements have taken place on regulatory aspects of symbiosome generation and functions, but obtaining spatiotemporally resolved symbiosome proteome and metabolomes, as well as tracking and deciphering its intracellular communication, is challenging. As a symbiotic interface, the symbiosome membrane proteome is largely composed of plant-derived proteins, while the symbiosome space between the symbiosome membrane and bacteria consists of proteins and metabolites from the rhizobium and plant. In the unique microenvironment, symbiosome proteins likely perform multiple tasks via their moonlighting functions, accounting for the many unsolved questions associated with symbiotic nitrogen fixation. In this review, we outline the current knowledge regarding the composition and potential moonlighting functions of symbiosome proteins. We highlight our current understanding of emergent symbiosome properties closely tied to nitrogen fixation activity. Ultimately, we discuss the challenges and opportunities for discovering new paradigms in symbiosome biology using recently developed technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信