{"title":"LncRNA PCAT6通过疏导乳腺癌细胞中的miR-545-3p介导UBFD1的表达","authors":"Jun-Dong Wu , Liqun Xu , Weibin Chen , Yanchun Zhou , Guiyu Zheng , Wei Gu","doi":"10.1016/j.ncrna.2024.01.019","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>LncRNA PCAT6 has been shown to involve in carcinogenesis of different tumors. In this study, we investigated underline mechanism by which PCAT6 promoted breast cancer cell progression.</p></div><div><h3>Methods</h3><p>RIP was used to identify lncRNAs associated with IMP1. Bioinformatics assays were used to predict potential miRNAs that interact with PCAT6 and mRNAs that are targeted by miR-545-3p. RNA-seq and RT-qPCR were used to analyze differential expression of lncRNAs and miRNA-targeted genes. Luciferase reporter and RNA pull-down assays were performed to identify the molecular interactions between PCAT6 and individual miRNAs. The role of PCAT6-mediated cell proliferation and invasion were tested by CCK-8 and transwell assays following loss-of-function and gain-of-function effects.</p></div><div><h3>Results</h3><p>We identified that PCAT6 is one of the lncRNAs that associated with IMP1. PCAT6 not only binds to IMP1, but also acts as a ceRNA to interact with multiple miRNAs, including miR-545-3p. Binding of IMP1 destabilized PCAT6, while competitive interaction with miR-545-3p allowed PCAT6 to positively regulate UBFD1 expression. Silencing UBFD1 mRNA could effectively rescue PCAT6-induced cell proliferation and invasive abilities.</p></div><div><h3>Conclusions</h3><p>Our study provided evidence that PCAT6 activates UBFD1 expression via sponging miR-545-3p to increase carcinogenesis of breast cancer cells. Based on the nature of UBFD1 as a polyubiquitin binding protein, our study suggested that ubiquitin pathway might contribute to breast cancer progression.</p></div>","PeriodicalId":37653,"journal":{"name":"Non-coding RNA Research","volume":"9 2","pages":"Pages 421-428"},"PeriodicalIF":5.9000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468054024000192/pdfft?md5=2b5e8b08aa95dddd3b2a5b9266325bf2&pid=1-s2.0-S2468054024000192-main.pdf","citationCount":"0","resultStr":"{\"title\":\"LncRNA PCAT6 mediates UBFD1 expression via sponging miR-545-3p in breast cancer cells\",\"authors\":\"Jun-Dong Wu , Liqun Xu , Weibin Chen , Yanchun Zhou , Guiyu Zheng , Wei Gu\",\"doi\":\"10.1016/j.ncrna.2024.01.019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>LncRNA PCAT6 has been shown to involve in carcinogenesis of different tumors. In this study, we investigated underline mechanism by which PCAT6 promoted breast cancer cell progression.</p></div><div><h3>Methods</h3><p>RIP was used to identify lncRNAs associated with IMP1. Bioinformatics assays were used to predict potential miRNAs that interact with PCAT6 and mRNAs that are targeted by miR-545-3p. RNA-seq and RT-qPCR were used to analyze differential expression of lncRNAs and miRNA-targeted genes. Luciferase reporter and RNA pull-down assays were performed to identify the molecular interactions between PCAT6 and individual miRNAs. The role of PCAT6-mediated cell proliferation and invasion were tested by CCK-8 and transwell assays following loss-of-function and gain-of-function effects.</p></div><div><h3>Results</h3><p>We identified that PCAT6 is one of the lncRNAs that associated with IMP1. PCAT6 not only binds to IMP1, but also acts as a ceRNA to interact with multiple miRNAs, including miR-545-3p. Binding of IMP1 destabilized PCAT6, while competitive interaction with miR-545-3p allowed PCAT6 to positively regulate UBFD1 expression. Silencing UBFD1 mRNA could effectively rescue PCAT6-induced cell proliferation and invasive abilities.</p></div><div><h3>Conclusions</h3><p>Our study provided evidence that PCAT6 activates UBFD1 expression via sponging miR-545-3p to increase carcinogenesis of breast cancer cells. Based on the nature of UBFD1 as a polyubiquitin binding protein, our study suggested that ubiquitin pathway might contribute to breast cancer progression.</p></div>\",\"PeriodicalId\":37653,\"journal\":{\"name\":\"Non-coding RNA Research\",\"volume\":\"9 2\",\"pages\":\"Pages 421-428\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2468054024000192/pdfft?md5=2b5e8b08aa95dddd3b2a5b9266325bf2&pid=1-s2.0-S2468054024000192-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Non-coding RNA Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468054024000192\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Non-coding RNA Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468054024000192","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
LncRNA PCAT6 mediates UBFD1 expression via sponging miR-545-3p in breast cancer cells
Background
LncRNA PCAT6 has been shown to involve in carcinogenesis of different tumors. In this study, we investigated underline mechanism by which PCAT6 promoted breast cancer cell progression.
Methods
RIP was used to identify lncRNAs associated with IMP1. Bioinformatics assays were used to predict potential miRNAs that interact with PCAT6 and mRNAs that are targeted by miR-545-3p. RNA-seq and RT-qPCR were used to analyze differential expression of lncRNAs and miRNA-targeted genes. Luciferase reporter and RNA pull-down assays were performed to identify the molecular interactions between PCAT6 and individual miRNAs. The role of PCAT6-mediated cell proliferation and invasion were tested by CCK-8 and transwell assays following loss-of-function and gain-of-function effects.
Results
We identified that PCAT6 is one of the lncRNAs that associated with IMP1. PCAT6 not only binds to IMP1, but also acts as a ceRNA to interact with multiple miRNAs, including miR-545-3p. Binding of IMP1 destabilized PCAT6, while competitive interaction with miR-545-3p allowed PCAT6 to positively regulate UBFD1 expression. Silencing UBFD1 mRNA could effectively rescue PCAT6-induced cell proliferation and invasive abilities.
Conclusions
Our study provided evidence that PCAT6 activates UBFD1 expression via sponging miR-545-3p to increase carcinogenesis of breast cancer cells. Based on the nature of UBFD1 as a polyubiquitin binding protein, our study suggested that ubiquitin pathway might contribute to breast cancer progression.
期刊介绍:
Non-coding RNA Research aims to publish high quality research and review articles on the mechanistic role of non-coding RNAs in all human diseases. This interdisciplinary journal will welcome research dealing with all aspects of non-coding RNAs-their biogenesis, regulation and role in disease progression. The focus of this journal will be to publish translational studies as well as well-designed basic studies with translational and clinical implications. The non-coding RNAs of particular interest will be microRNAs (miRNAs), small interfering RNAs (siRNAs), small nucleolar RNAs (snoRNAs), U-RNAs/small nuclear RNAs (snRNAs), exosomal/extracellular RNAs (exRNAs), Piwi-interacting RNAs (piRNAs) and long non-coding RNAs. Topics of interest will include, but not limited to: -Regulation of non-coding RNAs -Targets and regulatory functions of non-coding RNAs -Epigenetics and non-coding RNAs -Biological functions of non-coding RNAs -Non-coding RNAs as biomarkers -Non-coding RNA-based therapeutics -Prognostic value of non-coding RNAs -Pharmacological studies involving non-coding RNAs -Population based and epidemiological studies -Gene expression / proteomics / computational / pathway analysis-based studies on non-coding RNAs with functional validation -Novel strategies to manipulate non-coding RNAs expression and function -Clinical studies on evaluation of non-coding RNAs The journal will strive to disseminate cutting edge research, showcasing the ever-evolving importance of non-coding RNAs in modern day research and medicine.