{"title":"基于比较-转移学习的锂离子电池健康状态估计","authors":"Wei Liu, Songchen Gao, Wendi Yan","doi":"10.1115/1.4064656","DOIUrl":null,"url":null,"abstract":"\n Rapid and accurate estimation of the state of health of lithium-ion batteries is of great significance. This paper aims to address two issues faced when applying deep learning methods to estimate the health status of lithium-ion batteries: high data quality requirements and poor model generalizability. And this paper proposes a comparison-transfer learning approach with cyclic synchronization to estimate the state of health of lithium-ion batteries. Firstly, a cyclic synchronization method based on the Bezier curve fitting algorithm is introduced to synchronize the data obtained at different charge-discharge cycles of the lithium-ion battery, facilitating input to the model. Secondly, a comparison-transfer network using Pearson correlation coefficient is proposed to transfer knowledge from the source dataset to predict the target dataset under different environmental temperatures. By training a pre-trained model on the source dataset and utilizing the correlation coefficient to analyze the similarity between the source and target datasets, the accumulated knowledge in the source dataset can be effectively utilized to enhance prediction performance on the target dataset. In the experiments, the proposed method is validated using the lithium-ion battery aging public datasets. The experimental results demonstrate that the proposed approach achieves superior prediction performance in the case of small sample sizes, exhibiting higher accuracy and stability compared to traditional deep learning methods.","PeriodicalId":15579,"journal":{"name":"Journal of Electrochemical Energy Conversion and Storage","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison-Transfer Learning Based State-of-Health Estimation for Lithium-ion Battery\",\"authors\":\"Wei Liu, Songchen Gao, Wendi Yan\",\"doi\":\"10.1115/1.4064656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Rapid and accurate estimation of the state of health of lithium-ion batteries is of great significance. This paper aims to address two issues faced when applying deep learning methods to estimate the health status of lithium-ion batteries: high data quality requirements and poor model generalizability. And this paper proposes a comparison-transfer learning approach with cyclic synchronization to estimate the state of health of lithium-ion batteries. Firstly, a cyclic synchronization method based on the Bezier curve fitting algorithm is introduced to synchronize the data obtained at different charge-discharge cycles of the lithium-ion battery, facilitating input to the model. Secondly, a comparison-transfer network using Pearson correlation coefficient is proposed to transfer knowledge from the source dataset to predict the target dataset under different environmental temperatures. By training a pre-trained model on the source dataset and utilizing the correlation coefficient to analyze the similarity between the source and target datasets, the accumulated knowledge in the source dataset can be effectively utilized to enhance prediction performance on the target dataset. In the experiments, the proposed method is validated using the lithium-ion battery aging public datasets. The experimental results demonstrate that the proposed approach achieves superior prediction performance in the case of small sample sizes, exhibiting higher accuracy and stability compared to traditional deep learning methods.\",\"PeriodicalId\":15579,\"journal\":{\"name\":\"Journal of Electrochemical Energy Conversion and Storage\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electrochemical Energy Conversion and Storage\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4064656\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrochemical Energy Conversion and Storage","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4064656","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Comparison-Transfer Learning Based State-of-Health Estimation for Lithium-ion Battery
Rapid and accurate estimation of the state of health of lithium-ion batteries is of great significance. This paper aims to address two issues faced when applying deep learning methods to estimate the health status of lithium-ion batteries: high data quality requirements and poor model generalizability. And this paper proposes a comparison-transfer learning approach with cyclic synchronization to estimate the state of health of lithium-ion batteries. Firstly, a cyclic synchronization method based on the Bezier curve fitting algorithm is introduced to synchronize the data obtained at different charge-discharge cycles of the lithium-ion battery, facilitating input to the model. Secondly, a comparison-transfer network using Pearson correlation coefficient is proposed to transfer knowledge from the source dataset to predict the target dataset under different environmental temperatures. By training a pre-trained model on the source dataset and utilizing the correlation coefficient to analyze the similarity between the source and target datasets, the accumulated knowledge in the source dataset can be effectively utilized to enhance prediction performance on the target dataset. In the experiments, the proposed method is validated using the lithium-ion battery aging public datasets. The experimental results demonstrate that the proposed approach achieves superior prediction performance in the case of small sample sizes, exhibiting higher accuracy and stability compared to traditional deep learning methods.
期刊介绍:
The Journal of Electrochemical Energy Conversion and Storage focuses on processes, components, devices and systems that store and convert electrical and chemical energy. This journal publishes peer-reviewed archival scholarly articles, research papers, technical briefs, review articles, perspective articles, and special volumes. Specific areas of interest include electrochemical engineering, electrocatalysis, novel materials, analysis and design of components, devices, and systems, balance of plant, novel numerical and analytical simulations, advanced materials characterization, innovative material synthesis and manufacturing methods, thermal management, reliability, durability, and damage tolerance.