异氰酸酯生产过程中热交换器的工业规模结垢问题

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
C. Bevas, M. Abel, Ivo Jacobs, Peter Muller, Karin van Oudgaarden, John F. Watts
{"title":"异氰酸酯生产过程中热交换器的工业规模结垢问题","authors":"C. Bevas, M. Abel, Ivo Jacobs, Peter Muller, Karin van Oudgaarden, John F. Watts","doi":"10.1002/sia.7292","DOIUrl":null,"url":null,"abstract":"The fouling of a commercial stainless steel (AISI 316L) during the manufacture of polymeric methylene diphenyl diisocyanate (pMDI) has been studied using laboratory‐based fouling apparatus that simulates commercial production conditions. The goal of the work is to understand the mechanisms behind the corrosion and fouling during isocyanate production with a view to improving process efficiency, not only in this process, but also others using similar plant and processes. Steel coupons were exposed to a solution of pMDI and solid amine hydrochloride, with hydrogen chloride gas being bubbled through the reaction cell. A number of different conditions were investigated, the variables being pMDI concentration, HCl gas flow duration, immersion time and temperature. Following the fouling experiments the coupons were removed from the fouling rig, photographed, and examined by XPS and ToF‐SIMS; principal component analysis was used to extend the ToF‐SIMS analysis to identify organic fouling products. The extent of fouling is shown to be relatively insensitive to pMDI concentration, but significantly influenced by continual HCl flow and increased temperature, features which increase the extent of substrate corrosion thought to be a precursor to the fouling process itself. Both XPS and ToF‐SIMS confirm the formation of various nickel chlorides in the corrosion process. Urea and metal corrosion products are found to co‐exist on certain (random) areas of the coupon surface.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Industrial scale fouling of heat exchangers in isocyanate production\",\"authors\":\"C. Bevas, M. Abel, Ivo Jacobs, Peter Muller, Karin van Oudgaarden, John F. Watts\",\"doi\":\"10.1002/sia.7292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The fouling of a commercial stainless steel (AISI 316L) during the manufacture of polymeric methylene diphenyl diisocyanate (pMDI) has been studied using laboratory‐based fouling apparatus that simulates commercial production conditions. The goal of the work is to understand the mechanisms behind the corrosion and fouling during isocyanate production with a view to improving process efficiency, not only in this process, but also others using similar plant and processes. Steel coupons were exposed to a solution of pMDI and solid amine hydrochloride, with hydrogen chloride gas being bubbled through the reaction cell. A number of different conditions were investigated, the variables being pMDI concentration, HCl gas flow duration, immersion time and temperature. Following the fouling experiments the coupons were removed from the fouling rig, photographed, and examined by XPS and ToF‐SIMS; principal component analysis was used to extend the ToF‐SIMS analysis to identify organic fouling products. The extent of fouling is shown to be relatively insensitive to pMDI concentration, but significantly influenced by continual HCl flow and increased temperature, features which increase the extent of substrate corrosion thought to be a precursor to the fouling process itself. Both XPS and ToF‐SIMS confirm the formation of various nickel chlorides in the corrosion process. Urea and metal corrosion products are found to co‐exist on certain (random) areas of the coupon surface.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/sia.7292\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/sia.7292","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

使用模拟商业生产条件的实验室结垢装置,对聚合二苯基二异氰酸酯(pMDI)生产过程中的商用不锈钢(AISI 316L)结垢情况进行了研究。这项工作的目的是了解异氰酸酯生产过程中腐蚀和结垢的机理,以提高工艺效率,不仅在该工艺中,而且在使用类似设备和工艺的其他工艺中也是如此。将钢制试样暴露在 pMDI 和固体盐酸胺溶液中,并在反应池中通入氯化氢气体。对许多不同的条件进行了研究,变量包括 pMDI 浓度、氯化氢气流持续时间、浸泡时间和温度。污垢实验结束后,将试样从污垢装置上取下,进行拍照,并通过 XPS 和 ToF-SIMS 进行检测;使用主成分分析来扩展 ToF-SIMS 分析,以确定有机污垢产物。结果表明,污垢程度对 pMDI 浓度相对不敏感,但受持续盐酸流动和温度升高的显著影响,这些特征增加了基底腐蚀的程度,而基底腐蚀被认为是污垢过程本身的前兆。XPS 和 ToF-SIMS 都证实在腐蚀过程中形成了各种镍氯化物。在试样表面的某些(随机)区域发现尿素和金属腐蚀产物共存。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Industrial scale fouling of heat exchangers in isocyanate production
The fouling of a commercial stainless steel (AISI 316L) during the manufacture of polymeric methylene diphenyl diisocyanate (pMDI) has been studied using laboratory‐based fouling apparatus that simulates commercial production conditions. The goal of the work is to understand the mechanisms behind the corrosion and fouling during isocyanate production with a view to improving process efficiency, not only in this process, but also others using similar plant and processes. Steel coupons were exposed to a solution of pMDI and solid amine hydrochloride, with hydrogen chloride gas being bubbled through the reaction cell. A number of different conditions were investigated, the variables being pMDI concentration, HCl gas flow duration, immersion time and temperature. Following the fouling experiments the coupons were removed from the fouling rig, photographed, and examined by XPS and ToF‐SIMS; principal component analysis was used to extend the ToF‐SIMS analysis to identify organic fouling products. The extent of fouling is shown to be relatively insensitive to pMDI concentration, but significantly influenced by continual HCl flow and increased temperature, features which increase the extent of substrate corrosion thought to be a precursor to the fouling process itself. Both XPS and ToF‐SIMS confirm the formation of various nickel chlorides in the corrosion process. Urea and metal corrosion products are found to co‐exist on certain (random) areas of the coupon surface.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信