金属多级同时沸腾淬火的数值模型

IF 3.3 Q2 ENGINEERING, MANUFACTURING
M. González-Melo, Omar Alonso Rodríguez-Rodríguez, Bernardo Hernández-Morales, F. Acosta-González
{"title":"金属多级同时沸腾淬火的数值模型","authors":"M. González-Melo, Omar Alonso Rodríguez-Rodríguez, Bernardo Hernández-Morales, F. Acosta-González","doi":"10.3390/jmmp8010031","DOIUrl":null,"url":null,"abstract":"This work presents a heat transfer and boiling model that computes the evolution of the temperature field in a representative steel workpiece quenched from 850 or 930 °C by immersion in water flowing at average velocities of 0.2 or 0.6 m/s, respectively. Under these conditions, all three boiling regimes were present during cooling: stable vapor film, nucleate boiling, and single-phase convection. The model was based on the numerical solution of the heat conduction equation coupled to the solution of the energy and momentum equations for water. The mixture phase approach was adopted using the Lee model to compute the rates of water evaporation–condensation. Heat flux at the wall was calculated for all regimes using a single semi-mechanistic model. Therefore, the evolution of boiling regimes at every position on the wall surface was automatically determined. Predictions were validated using laboratory results, namely: (a) videorecording the upward motion of the wetting front along the workpiece wall surface; and (b) cooling curves obtained with embedded thermocouples in the steel probe. Wall heat flux calculations were used to determine the importance of the simultaneous presence of all three boiling regimes on the heat flux distribution. It was found that this simultaneous presence leads to high heat flux variations that should be avoided in production lines. In addition, it was determined that the corresponding inverse heat conduction problem to estimate the active heat transfer boundary condition must be set-up for 2D heat flow.","PeriodicalId":16319,"journal":{"name":"Journal of Manufacturing and Materials Processing","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Model of Simultaneous Multi-Regime Boiling Quenching of Metals\",\"authors\":\"M. González-Melo, Omar Alonso Rodríguez-Rodríguez, Bernardo Hernández-Morales, F. Acosta-González\",\"doi\":\"10.3390/jmmp8010031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents a heat transfer and boiling model that computes the evolution of the temperature field in a representative steel workpiece quenched from 850 or 930 °C by immersion in water flowing at average velocities of 0.2 or 0.6 m/s, respectively. Under these conditions, all three boiling regimes were present during cooling: stable vapor film, nucleate boiling, and single-phase convection. The model was based on the numerical solution of the heat conduction equation coupled to the solution of the energy and momentum equations for water. The mixture phase approach was adopted using the Lee model to compute the rates of water evaporation–condensation. Heat flux at the wall was calculated for all regimes using a single semi-mechanistic model. Therefore, the evolution of boiling regimes at every position on the wall surface was automatically determined. Predictions were validated using laboratory results, namely: (a) videorecording the upward motion of the wetting front along the workpiece wall surface; and (b) cooling curves obtained with embedded thermocouples in the steel probe. Wall heat flux calculations were used to determine the importance of the simultaneous presence of all three boiling regimes on the heat flux distribution. It was found that this simultaneous presence leads to high heat flux variations that should be avoided in production lines. In addition, it was determined that the corresponding inverse heat conduction problem to estimate the active heat transfer boundary condition must be set-up for 2D heat flow.\",\"PeriodicalId\":16319,\"journal\":{\"name\":\"Journal of Manufacturing and Materials Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Manufacturing and Materials Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jmmp8010031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing and Materials Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jmmp8010031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

这项研究提出了一种传热和沸腾模型,该模型计算了从 850 或 930 °C淬火的代表性钢制工件在平均流速分别为 0.2 或 0.6 m/s 的水流中的温度场演变情况。在这些条件下,冷却过程中存在所有三种沸腾状态:稳定蒸汽膜、成核沸腾和单相对流。该模型基于热传导方程的数值解法以及水的能量和动量方程的解法。采用李氏模型的混相方法来计算水的蒸发-凝结速率。使用单一的半机械模型计算了所有沸腾状态下的壁面热通量。因此,可自动确定壁面上每个位置的沸腾状态的演变。利用实验室结果对预测进行了验证,即:(a) 对润湿前沿沿工件壁面向上运动的视频记录;(b) 利用钢探头中的嵌入式热电偶获得的冷却曲线。壁面热通量计算用于确定三种沸腾状态同时存在对热通量分布的影响。结果发现,三种沸腾状态同时存在会导致热通量变化很大,应避免在生产线上使用。此外,还确定必须为二维热流设置相应的反热传导问题,以估算主动传热边界条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical Model of Simultaneous Multi-Regime Boiling Quenching of Metals
This work presents a heat transfer and boiling model that computes the evolution of the temperature field in a representative steel workpiece quenched from 850 or 930 °C by immersion in water flowing at average velocities of 0.2 or 0.6 m/s, respectively. Under these conditions, all three boiling regimes were present during cooling: stable vapor film, nucleate boiling, and single-phase convection. The model was based on the numerical solution of the heat conduction equation coupled to the solution of the energy and momentum equations for water. The mixture phase approach was adopted using the Lee model to compute the rates of water evaporation–condensation. Heat flux at the wall was calculated for all regimes using a single semi-mechanistic model. Therefore, the evolution of boiling regimes at every position on the wall surface was automatically determined. Predictions were validated using laboratory results, namely: (a) videorecording the upward motion of the wetting front along the workpiece wall surface; and (b) cooling curves obtained with embedded thermocouples in the steel probe. Wall heat flux calculations were used to determine the importance of the simultaneous presence of all three boiling regimes on the heat flux distribution. It was found that this simultaneous presence leads to high heat flux variations that should be avoided in production lines. In addition, it was determined that the corresponding inverse heat conduction problem to estimate the active heat transfer boundary condition must be set-up for 2D heat flow.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Manufacturing and Materials Processing
Journal of Manufacturing and Materials Processing Engineering-Industrial and Manufacturing Engineering
CiteScore
5.10
自引率
6.20%
发文量
129
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信