Huaijuan Guo, Yang Liu, Chao Fang, Xuebing Yan, Kun Zhang, Huali Gao
{"title":"共价有机框架纳米医学的前沿进展","authors":"Huaijuan Guo, Yang Liu, Chao Fang, Xuebing Yan, Kun Zhang, Huali Gao","doi":"10.1002/anbr.202300163","DOIUrl":null,"url":null,"abstract":"<p>Covalent organic frameworks (COFs) are a class of porous crystalline materials with exceptional properties, constructed through covalently linked organic units. COFs are extensively applied in the field of biomedicine, particularly in the context of anticancer treatments. First, this review summarizes the diverse synthetic methods of COFs, including solvothermal synthesis, microwave-assisted synthesis, room temperature synthesis, interface synthesis, ionothermal techniques, mechanical grinding, and electrochemical methods, and their impacts on the material's structure and performance. Second, COFs exhibit tremendous potential in the field of cancer therapy because of their orderly lattice structure, tunable pore sizes, high surface area, and excellent thermal and chemical stability. Therefore, the article deeply explores the applications of COFs in diverse cancer treatment modalities, encompassing early diagnostic bioimaging, drug delivery, various phototherapies, chemodynamic therapy, sonodynamic therapy, radiation therapy, and their combined therapeutic strategies. Finally, the article points out current research challenges and future directions in this field.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 4","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202300163","citationCount":"0","resultStr":"{\"title\":\"The Cutting-Edge Progress in Covalent Organic Framework-Based Nanomedicine\",\"authors\":\"Huaijuan Guo, Yang Liu, Chao Fang, Xuebing Yan, Kun Zhang, Huali Gao\",\"doi\":\"10.1002/anbr.202300163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Covalent organic frameworks (COFs) are a class of porous crystalline materials with exceptional properties, constructed through covalently linked organic units. COFs are extensively applied in the field of biomedicine, particularly in the context of anticancer treatments. First, this review summarizes the diverse synthetic methods of COFs, including solvothermal synthesis, microwave-assisted synthesis, room temperature synthesis, interface synthesis, ionothermal techniques, mechanical grinding, and electrochemical methods, and their impacts on the material's structure and performance. Second, COFs exhibit tremendous potential in the field of cancer therapy because of their orderly lattice structure, tunable pore sizes, high surface area, and excellent thermal and chemical stability. Therefore, the article deeply explores the applications of COFs in diverse cancer treatment modalities, encompassing early diagnostic bioimaging, drug delivery, various phototherapies, chemodynamic therapy, sonodynamic therapy, radiation therapy, and their combined therapeutic strategies. Finally, the article points out current research challenges and future directions in this field.</p>\",\"PeriodicalId\":29975,\"journal\":{\"name\":\"Advanced Nanobiomed Research\",\"volume\":\"4 4\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202300163\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Nanobiomed Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anbr.202300163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nanobiomed Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anbr.202300163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
The Cutting-Edge Progress in Covalent Organic Framework-Based Nanomedicine
Covalent organic frameworks (COFs) are a class of porous crystalline materials with exceptional properties, constructed through covalently linked organic units. COFs are extensively applied in the field of biomedicine, particularly in the context of anticancer treatments. First, this review summarizes the diverse synthetic methods of COFs, including solvothermal synthesis, microwave-assisted synthesis, room temperature synthesis, interface synthesis, ionothermal techniques, mechanical grinding, and electrochemical methods, and their impacts on the material's structure and performance. Second, COFs exhibit tremendous potential in the field of cancer therapy because of their orderly lattice structure, tunable pore sizes, high surface area, and excellent thermal and chemical stability. Therefore, the article deeply explores the applications of COFs in diverse cancer treatment modalities, encompassing early diagnostic bioimaging, drug delivery, various phototherapies, chemodynamic therapy, sonodynamic therapy, radiation therapy, and their combined therapeutic strategies. Finally, the article points out current research challenges and future directions in this field.
期刊介绍:
Advanced NanoBiomed Research will provide an Open Access home for cutting-edge nanomedicine, bioengineering and biomaterials research aimed at improving human health. The journal will capture a broad spectrum of research from increasingly multi- and interdisciplinary fields of the traditional areas of biomedicine, bioengineering and health-related materials science as well as precision and personalized medicine, drug delivery, and artificial intelligence-driven health science.
The scope of Advanced NanoBiomed Research will cover the following key subject areas:
▪ Nanomedicine and nanotechnology, with applications in drug and gene delivery, diagnostics, theranostics, photothermal and photodynamic therapy and multimodal imaging.
▪ Biomaterials, including hydrogels, 2D materials, biopolymers, composites, biodegradable materials, biohybrids and biomimetics (such as artificial cells, exosomes and extracellular vesicles), as well as all organic and inorganic materials for biomedical applications.
▪ Biointerfaces, such as anti-microbial surfaces and coatings, as well as interfaces for cellular engineering, immunoengineering and 3D cell culture.
▪ Biofabrication including (bio)inks and technologies, towards generation of functional tissues and organs.
▪ Tissue engineering and regenerative medicine, including scaffolds and scaffold-free approaches, for bone, ligament, muscle, skin, neural, cardiac tissue engineering and tissue vascularization.
▪ Devices for healthcare applications, disease modelling and treatment, such as diagnostics, lab-on-a-chip, organs-on-a-chip, bioMEMS, bioelectronics, wearables, actuators, soft robotics, and intelligent drug delivery systems.
with a strong focus on applications of these fields, from bench-to-bedside, for treatment of all diseases and disorders, such as infectious, autoimmune, cardiovascular and metabolic diseases, neurological disorders and cancer; including pharmacology and toxicology studies.