Xiongfeng Nie, Yong Tang, T. Wu, Xinrui Zhao, Ziyang Xu, Rong Yang, Yage Sun, Bin Wu, Quanhong Han, Jingwen Hui, Wenguang Liu
{"title":"用于角膜再生的三维打印顺序强化高强度天然聚合物水凝胶双层支架","authors":"Xiongfeng Nie, Yong Tang, T. Wu, Xinrui Zhao, Ziyang Xu, Rong Yang, Yage Sun, Bin Wu, Quanhong Han, Jingwen Hui, Wenguang Liu","doi":"10.1093/rb/rbae012","DOIUrl":null,"url":null,"abstract":"\n 3D printing of high-strength natural polymer biodegradable hydrogel scaffolds simultaneously resembling the biomechanics of corneal tissue and facilitating tissue regeneration remains a huge challenge due to the inherent brittleness of natural polymer hydrogels and the demanding requirements of printing. Herein, concentrated aqueous solutions of gelatin and carbohydrazide modified alginate (Gel/Alg-CDH) are blended to form a natural polymer hydrogel ink, where the hydrazides in Alg-CDH are found to form strong hydrogen-bonds with the gelatin. The hydrogen-bonding-strengthened Gel/Alg-CDH hydrogel demonstrates an appropriate thickened viscosity and shear-thinning for extrusion printing. The strong hydrogen bonds contribute to remarkably increased mechanical properties of Gel/Alg-CDH hydrogel with a maximum elongation of over 400%. In addition, sequentially Ca2+-physical crosslinking and then moderately chemical crosslinking significantly enhance the mechanical properties of Gel/Alg-CDH hydrogels that ultimately exhibit an intriguing J-shaped stress-strain curve (tensile strength of 1.068 MPa and the toughness of 677.6 kJ/m2). The dually crosslinked Gel-Alg-CDH-Ca2+-EDC hydrogels demonstrate a high transparency, physiological swelling stability and rapid enzymatic degradability, as well as suturability. Growth factor and drug-loaded biomimetic bilayer hydrogel scaffold is customized via a multi-nozzle printing system. This bioactive bilayer hydrogel scaffold considerably promotes regeneration of corneal epithelium and stroma, and inhibits cornea scarring in rabbit cornea keratoplasty.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"92 3-4","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D printing sequentially strengthening high-strength natural polymer hydrogel bilayer scaffold for cornea regeneration\",\"authors\":\"Xiongfeng Nie, Yong Tang, T. Wu, Xinrui Zhao, Ziyang Xu, Rong Yang, Yage Sun, Bin Wu, Quanhong Han, Jingwen Hui, Wenguang Liu\",\"doi\":\"10.1093/rb/rbae012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n 3D printing of high-strength natural polymer biodegradable hydrogel scaffolds simultaneously resembling the biomechanics of corneal tissue and facilitating tissue regeneration remains a huge challenge due to the inherent brittleness of natural polymer hydrogels and the demanding requirements of printing. Herein, concentrated aqueous solutions of gelatin and carbohydrazide modified alginate (Gel/Alg-CDH) are blended to form a natural polymer hydrogel ink, where the hydrazides in Alg-CDH are found to form strong hydrogen-bonds with the gelatin. The hydrogen-bonding-strengthened Gel/Alg-CDH hydrogel demonstrates an appropriate thickened viscosity and shear-thinning for extrusion printing. The strong hydrogen bonds contribute to remarkably increased mechanical properties of Gel/Alg-CDH hydrogel with a maximum elongation of over 400%. In addition, sequentially Ca2+-physical crosslinking and then moderately chemical crosslinking significantly enhance the mechanical properties of Gel/Alg-CDH hydrogels that ultimately exhibit an intriguing J-shaped stress-strain curve (tensile strength of 1.068 MPa and the toughness of 677.6 kJ/m2). The dually crosslinked Gel-Alg-CDH-Ca2+-EDC hydrogels demonstrate a high transparency, physiological swelling stability and rapid enzymatic degradability, as well as suturability. Growth factor and drug-loaded biomimetic bilayer hydrogel scaffold is customized via a multi-nozzle printing system. This bioactive bilayer hydrogel scaffold considerably promotes regeneration of corneal epithelium and stroma, and inhibits cornea scarring in rabbit cornea keratoplasty.\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"92 3-4\",\"pages\":\"\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/rb/rbae012\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/rb/rbae012","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
3D printing sequentially strengthening high-strength natural polymer hydrogel bilayer scaffold for cornea regeneration
3D printing of high-strength natural polymer biodegradable hydrogel scaffolds simultaneously resembling the biomechanics of corneal tissue and facilitating tissue regeneration remains a huge challenge due to the inherent brittleness of natural polymer hydrogels and the demanding requirements of printing. Herein, concentrated aqueous solutions of gelatin and carbohydrazide modified alginate (Gel/Alg-CDH) are blended to form a natural polymer hydrogel ink, where the hydrazides in Alg-CDH are found to form strong hydrogen-bonds with the gelatin. The hydrogen-bonding-strengthened Gel/Alg-CDH hydrogel demonstrates an appropriate thickened viscosity and shear-thinning for extrusion printing. The strong hydrogen bonds contribute to remarkably increased mechanical properties of Gel/Alg-CDH hydrogel with a maximum elongation of over 400%. In addition, sequentially Ca2+-physical crosslinking and then moderately chemical crosslinking significantly enhance the mechanical properties of Gel/Alg-CDH hydrogels that ultimately exhibit an intriguing J-shaped stress-strain curve (tensile strength of 1.068 MPa and the toughness of 677.6 kJ/m2). The dually crosslinked Gel-Alg-CDH-Ca2+-EDC hydrogels demonstrate a high transparency, physiological swelling stability and rapid enzymatic degradability, as well as suturability. Growth factor and drug-loaded biomimetic bilayer hydrogel scaffold is customized via a multi-nozzle printing system. This bioactive bilayer hydrogel scaffold considerably promotes regeneration of corneal epithelium and stroma, and inhibits cornea scarring in rabbit cornea keratoplasty.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.