分子动力学在增材制造中的应用综述

Debashish Gogoi, Amit Kumar, Sangjukta Devi, Manjesh Kumar, Anuj Sharma
{"title":"分子动力学在增材制造中的应用综述","authors":"Debashish Gogoi, Amit Kumar, Sangjukta Devi, Manjesh Kumar, Anuj Sharma","doi":"10.1177/25165984241228414","DOIUrl":null,"url":null,"abstract":"Additive manufacturing (AM) is an emerging technology that has significant geometric and material capabilities, because of which it is being used in different fields such as aerospace, healthcare, automotive, architecture, and construction. This process takes the digital data for the three-dimensional model to be made and adds materials accordingly in a layer-by-layer manner. Therefore, the understanding of materials at the atomic level may help in getting optimized output in the AM process, and it can have a significant impact on the final products. Molecular dynamics (MD) studies the dynamic behavior of molecules and materials at the atomic and molecular scales. The main objective of this review article is to briefly discuss how MD simulations may be utilized to examine AM processes. This review also covers the potential benefits of using MD to characterize AM processes, the current literature on using MD to simulate AM processes, the primary obstacles and limitations of MD simulations, and the methodologies utilized in AM simulations using MD. Finally, this article concludes with an in-depth discussion and outlines future research potentials.","PeriodicalId":129806,"journal":{"name":"Journal of Micromanufacturing","volume":"125 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A review on applications of molecular dynamics in additive manufacturing\",\"authors\":\"Debashish Gogoi, Amit Kumar, Sangjukta Devi, Manjesh Kumar, Anuj Sharma\",\"doi\":\"10.1177/25165984241228414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Additive manufacturing (AM) is an emerging technology that has significant geometric and material capabilities, because of which it is being used in different fields such as aerospace, healthcare, automotive, architecture, and construction. This process takes the digital data for the three-dimensional model to be made and adds materials accordingly in a layer-by-layer manner. Therefore, the understanding of materials at the atomic level may help in getting optimized output in the AM process, and it can have a significant impact on the final products. Molecular dynamics (MD) studies the dynamic behavior of molecules and materials at the atomic and molecular scales. The main objective of this review article is to briefly discuss how MD simulations may be utilized to examine AM processes. This review also covers the potential benefits of using MD to characterize AM processes, the current literature on using MD to simulate AM processes, the primary obstacles and limitations of MD simulations, and the methodologies utilized in AM simulations using MD. Finally, this article concludes with an in-depth discussion and outlines future research potentials.\",\"PeriodicalId\":129806,\"journal\":{\"name\":\"Journal of Micromanufacturing\",\"volume\":\"125 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Micromanufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/25165984241228414\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micromanufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/25165984241228414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

快速成型制造(AM)是一项新兴技术,具有强大的几何和材料能力,因此被广泛应用于航空航天、医疗保健、汽车、建筑和建造等不同领域。该工艺采用数字化数据制作三维模型,并逐层添加相应的材料。因此,从原子层面了解材料有助于在 AM 过程中获得最佳产出,并对最终产品产生重大影响。分子动力学(MD)研究分子和材料在原子和分子尺度上的动态行为。本综述文章的主要目的是简要讨论如何利用 MD 模拟来检查 AM 工艺。这篇综述文章还涵盖了使用 MD 表征 AM 过程的潜在好处、使用 MD 模拟 AM 过程的现有文献、MD 模拟的主要障碍和限制,以及使用 MD 模拟 AM 的方法。最后,本文进行了深入讨论,并概述了未来的研究潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A review on applications of molecular dynamics in additive manufacturing
Additive manufacturing (AM) is an emerging technology that has significant geometric and material capabilities, because of which it is being used in different fields such as aerospace, healthcare, automotive, architecture, and construction. This process takes the digital data for the three-dimensional model to be made and adds materials accordingly in a layer-by-layer manner. Therefore, the understanding of materials at the atomic level may help in getting optimized output in the AM process, and it can have a significant impact on the final products. Molecular dynamics (MD) studies the dynamic behavior of molecules and materials at the atomic and molecular scales. The main objective of this review article is to briefly discuss how MD simulations may be utilized to examine AM processes. This review also covers the potential benefits of using MD to characterize AM processes, the current literature on using MD to simulate AM processes, the primary obstacles and limitations of MD simulations, and the methodologies utilized in AM simulations using MD. Finally, this article concludes with an in-depth discussion and outlines future research potentials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信