美国东南部未来飓风强度预测:对不同伪全球变暖方法的敏感性

IF 3.3 Q2 ENVIRONMENTAL SCIENCES
Patrick Olschewski, Harald Kunstmann
{"title":"美国东南部未来飓风强度预测:对不同伪全球变暖方法的敏感性","authors":"Patrick Olschewski, Harald Kunstmann","doi":"10.3389/fclim.2024.1353396","DOIUrl":null,"url":null,"abstract":"Tropical cyclones are prone to cause fatalities and damages reaching far into billions of US Dollars. There is evidence that these events could intensify under ongoing global warming, and accordingly disaster prevention and adaptation strategies are necessary. We apply Pseudo-Global Warming (PGW) as a computational cost-efficient alternative to conventional long-term modeling, enabling the assessment of historical events under future storylines. Not many studies specifically assess the sensitivity of PGW in the context of short-term extreme events in the United States. In an attempt to close this gap, this study explores the sensitivity of hurricane intensity to different PGW configurations, including a purely thermodynamic, a dynamic, and a more comprehensive modulation of initial and boundary conditions using the Weather and Research and Forecasting Model (WRF). The climate perturbations are calculated using two individual CMIP6 climate models with a relatively low and high temperature change and the CMIP6 ensemble mean, all under SSP5-8.5. WRF was set up in a two-way nesting framework using domains of 25 and 5 km spatial resolution. Results show that high uncertainties exist between the thermodynamic and dynamic approaches, whereas the deviations between the dynamic approach and the comprehensive variable modulation are low. Hurricanes modeled under the thermodynamic approach tend toward higher intensities, whereas the perturbation of wind under the dynamic approach may impose unwanted effects on cyclogenesis, for example due to increased vertical wind shear. The highest sensitivity, however, stems from the selected CMIP6 model. We conclude that PGW studies should thoroughly assess uncertainties imposed by the PGW scheme, similar to those imposed by model parameterizations. All simulation results suggest an increase in maximum wind speeds and precipitation for the high impact model and the ensemble mean. An unfolding of the inspected events in a warmer world could therefore exacerbate the impacts on nature and society.","PeriodicalId":33632,"journal":{"name":"Frontiers in Climate","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Future projections of hurricane intensity in the southeastern U.S.: sensitivity to different Pseudo-Global Warming methods\",\"authors\":\"Patrick Olschewski, Harald Kunstmann\",\"doi\":\"10.3389/fclim.2024.1353396\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tropical cyclones are prone to cause fatalities and damages reaching far into billions of US Dollars. There is evidence that these events could intensify under ongoing global warming, and accordingly disaster prevention and adaptation strategies are necessary. We apply Pseudo-Global Warming (PGW) as a computational cost-efficient alternative to conventional long-term modeling, enabling the assessment of historical events under future storylines. Not many studies specifically assess the sensitivity of PGW in the context of short-term extreme events in the United States. In an attempt to close this gap, this study explores the sensitivity of hurricane intensity to different PGW configurations, including a purely thermodynamic, a dynamic, and a more comprehensive modulation of initial and boundary conditions using the Weather and Research and Forecasting Model (WRF). The climate perturbations are calculated using two individual CMIP6 climate models with a relatively low and high temperature change and the CMIP6 ensemble mean, all under SSP5-8.5. WRF was set up in a two-way nesting framework using domains of 25 and 5 km spatial resolution. Results show that high uncertainties exist between the thermodynamic and dynamic approaches, whereas the deviations between the dynamic approach and the comprehensive variable modulation are low. Hurricanes modeled under the thermodynamic approach tend toward higher intensities, whereas the perturbation of wind under the dynamic approach may impose unwanted effects on cyclogenesis, for example due to increased vertical wind shear. The highest sensitivity, however, stems from the selected CMIP6 model. We conclude that PGW studies should thoroughly assess uncertainties imposed by the PGW scheme, similar to those imposed by model parameterizations. All simulation results suggest an increase in maximum wind speeds and precipitation for the high impact model and the ensemble mean. An unfolding of the inspected events in a warmer world could therefore exacerbate the impacts on nature and society.\",\"PeriodicalId\":33632,\"journal\":{\"name\":\"Frontiers in Climate\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Climate\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fclim.2024.1353396\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Climate","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fclim.2024.1353396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

热带气旋很容易造成人员伤亡和高达数十亿美元的损失。有证据表明,在全球持续变暖的情况下,这些事件可能会加剧,因此有必要制定灾害预防和适应战略。我们将伪全球变暖(PGW)作为传统长期建模的一种具有计算成本效益的替代方法,从而能够对未来故事情节下的历史事件进行评估。专门针对美国短期极端事件评估 PGW 敏感性的研究并不多。为了填补这一空白,本研究利用天气研究和预测模型(WRF)探讨了飓风强度对不同 PGW 配置的敏感性,包括纯热力学配置、动态配置以及对初始条件和边界条件的更全面调节。在 SSP5-8.5 条件下,使用温度变化相对较低和较高的两个 CMIP6 气候模式以及 CMIP6 集合平均值计算气候扰动。WRF 采用双向嵌套框架,空间分辨率分别为 25 公里和 5 公里。结果表明,热力学方法和动力学方法之间存在很大的不确定性,而动力学方法与综合变量调制之间的偏差较小。用热力学方法模拟的飓风往往强度较高,而用动力学方法模拟的风扰动可能会对气旋生成产生不必要的影响,例如由于垂直风切变的增加。不过,所选的 CMIP6 模式的灵敏度最高。我们的结论是,PGW 研究应全面评估 PGW 方案带来的不确定性,类似于模式参数化带来的不确定性。所有模拟结果都表明,高影响模式和集合平均模式的最大风速和降水量都有所增加。因此,在气候变暖的情况下发生的事件可能会加剧对自然和社会的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Future projections of hurricane intensity in the southeastern U.S.: sensitivity to different Pseudo-Global Warming methods
Tropical cyclones are prone to cause fatalities and damages reaching far into billions of US Dollars. There is evidence that these events could intensify under ongoing global warming, and accordingly disaster prevention and adaptation strategies are necessary. We apply Pseudo-Global Warming (PGW) as a computational cost-efficient alternative to conventional long-term modeling, enabling the assessment of historical events under future storylines. Not many studies specifically assess the sensitivity of PGW in the context of short-term extreme events in the United States. In an attempt to close this gap, this study explores the sensitivity of hurricane intensity to different PGW configurations, including a purely thermodynamic, a dynamic, and a more comprehensive modulation of initial and boundary conditions using the Weather and Research and Forecasting Model (WRF). The climate perturbations are calculated using two individual CMIP6 climate models with a relatively low and high temperature change and the CMIP6 ensemble mean, all under SSP5-8.5. WRF was set up in a two-way nesting framework using domains of 25 and 5 km spatial resolution. Results show that high uncertainties exist between the thermodynamic and dynamic approaches, whereas the deviations between the dynamic approach and the comprehensive variable modulation are low. Hurricanes modeled under the thermodynamic approach tend toward higher intensities, whereas the perturbation of wind under the dynamic approach may impose unwanted effects on cyclogenesis, for example due to increased vertical wind shear. The highest sensitivity, however, stems from the selected CMIP6 model. We conclude that PGW studies should thoroughly assess uncertainties imposed by the PGW scheme, similar to those imposed by model parameterizations. All simulation results suggest an increase in maximum wind speeds and precipitation for the high impact model and the ensemble mean. An unfolding of the inspected events in a warmer world could therefore exacerbate the impacts on nature and society.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Climate
Frontiers in Climate Environmental Science-Environmental Science (miscellaneous)
CiteScore
4.50
自引率
0.00%
发文量
233
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信