Ilaria Grigoletto, E. Casadei, F. Panni, E. Valli, Chiara Cevoli, A. Bendini, D. L. García-González, Francesca Focante, Angela Felicita Savino, Stefania Carpino, T. Gallina Toschi
{"title":"筛查工具与多元数据分析相结合,预测或确认初榨橄榄油的 Panel 检验分类","authors":"Ilaria Grigoletto, E. Casadei, F. Panni, E. Valli, Chiara Cevoli, A. Bendini, D. L. García-González, Francesca Focante, Angela Felicita Savino, Stefania Carpino, T. Gallina Toschi","doi":"10.1002/ejlt.202300211","DOIUrl":null,"url":null,"abstract":"A particular aspect of quality control of virgin olive oil (VOO) is the mandatory application, together with chemical and instrumental determinations, of a standardized and official method for sensory assessment. The latter, known as Panel test, is carried out by trained assessors and contributes to the classification of VOOs into three commercial categories (extra virgin, virgin, and lampante). One drawback of this method is related to the large number of samples to be analyzed, compared to the work capacity of a sensory panel, especially during the selection for purchase by companies that blend and market virgin oils and the quality control conducted by the authorities to verify the declared commercial category. For this reason, it is helpful to develop and validate robust and rapid screening methods, based on volatile fingerprints, to preclassify each sample into one of the three commercial categories. Considering the strict relation between volatile compounds and the main sensory attributes (fruity and defects), a gas‐chromatographic volatile fingerprint can be the right choice. In this paper, the comparison of two emerging techniques, namely, headspace‐gas chromatography‐ion mobility spectrometry (HS‐GC‐IMS) and flash‐gas chromatography (FGC), applied on a sample set of 49 VOOs, using calibrations previously built with a larger number of samples, is presented. The number of correctly classified samples, with respect to the commercial category determined by the Panel test, was satisfactory and comparable (92% for HS‐GC‐IMS, and 94% for FGC), confirming the effectiveness of both methods and the robustness of the predictive models.Practical Applications: The demand for rapid screening tools to reduce the number of samples to be assessed by the Panel test has increased in recent years. The validation of robust models and their joint adoption by companies that market VOOs as well as official control bodies could reduce nonconformities and increase the batches of VOO being controlled, thus better protecting the consumer. Therefore, it is desirable to have different tools available to analyze volatile compounds, together with the associated calibration models, along with detailed instructions for their application, to have different alternatives that suit the equipment of individual laboratories.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"60 3","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Screening tools combined with multivariate data analysis to predict or confirm virgin olive oil classification by the Panel test\",\"authors\":\"Ilaria Grigoletto, E. Casadei, F. Panni, E. Valli, Chiara Cevoli, A. Bendini, D. L. García-González, Francesca Focante, Angela Felicita Savino, Stefania Carpino, T. Gallina Toschi\",\"doi\":\"10.1002/ejlt.202300211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A particular aspect of quality control of virgin olive oil (VOO) is the mandatory application, together with chemical and instrumental determinations, of a standardized and official method for sensory assessment. The latter, known as Panel test, is carried out by trained assessors and contributes to the classification of VOOs into three commercial categories (extra virgin, virgin, and lampante). One drawback of this method is related to the large number of samples to be analyzed, compared to the work capacity of a sensory panel, especially during the selection for purchase by companies that blend and market virgin oils and the quality control conducted by the authorities to verify the declared commercial category. For this reason, it is helpful to develop and validate robust and rapid screening methods, based on volatile fingerprints, to preclassify each sample into one of the three commercial categories. Considering the strict relation between volatile compounds and the main sensory attributes (fruity and defects), a gas‐chromatographic volatile fingerprint can be the right choice. In this paper, the comparison of two emerging techniques, namely, headspace‐gas chromatography‐ion mobility spectrometry (HS‐GC‐IMS) and flash‐gas chromatography (FGC), applied on a sample set of 49 VOOs, using calibrations previously built with a larger number of samples, is presented. The number of correctly classified samples, with respect to the commercial category determined by the Panel test, was satisfactory and comparable (92% for HS‐GC‐IMS, and 94% for FGC), confirming the effectiveness of both methods and the robustness of the predictive models.Practical Applications: The demand for rapid screening tools to reduce the number of samples to be assessed by the Panel test has increased in recent years. The validation of robust models and their joint adoption by companies that market VOOs as well as official control bodies could reduce nonconformities and increase the batches of VOO being controlled, thus better protecting the consumer. Therefore, it is desirable to have different tools available to analyze volatile compounds, together with the associated calibration models, along with detailed instructions for their application, to have different alternatives that suit the equipment of individual laboratories.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":\"60 3\",\"pages\":\"\"},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1002/ejlt.202300211\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1002/ejlt.202300211","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Screening tools combined with multivariate data analysis to predict or confirm virgin olive oil classification by the Panel test
A particular aspect of quality control of virgin olive oil (VOO) is the mandatory application, together with chemical and instrumental determinations, of a standardized and official method for sensory assessment. The latter, known as Panel test, is carried out by trained assessors and contributes to the classification of VOOs into three commercial categories (extra virgin, virgin, and lampante). One drawback of this method is related to the large number of samples to be analyzed, compared to the work capacity of a sensory panel, especially during the selection for purchase by companies that blend and market virgin oils and the quality control conducted by the authorities to verify the declared commercial category. For this reason, it is helpful to develop and validate robust and rapid screening methods, based on volatile fingerprints, to preclassify each sample into one of the three commercial categories. Considering the strict relation between volatile compounds and the main sensory attributes (fruity and defects), a gas‐chromatographic volatile fingerprint can be the right choice. In this paper, the comparison of two emerging techniques, namely, headspace‐gas chromatography‐ion mobility spectrometry (HS‐GC‐IMS) and flash‐gas chromatography (FGC), applied on a sample set of 49 VOOs, using calibrations previously built with a larger number of samples, is presented. The number of correctly classified samples, with respect to the commercial category determined by the Panel test, was satisfactory and comparable (92% for HS‐GC‐IMS, and 94% for FGC), confirming the effectiveness of both methods and the robustness of the predictive models.Practical Applications: The demand for rapid screening tools to reduce the number of samples to be assessed by the Panel test has increased in recent years. The validation of robust models and their joint adoption by companies that market VOOs as well as official control bodies could reduce nonconformities and increase the batches of VOO being controlled, thus better protecting the consumer. Therefore, it is desirable to have different tools available to analyze volatile compounds, together with the associated calibration models, along with detailed instructions for their application, to have different alternatives that suit the equipment of individual laboratories.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.