筛查工具与多元数据分析相结合,预测或确认初榨橄榄油的 Panel 检验分类

IF 1.8 3区 农林科学 Q3 FOOD SCIENCE & TECHNOLOGY
Ilaria Grigoletto, E. Casadei, F. Panni, E. Valli, Chiara Cevoli, A. Bendini, D. L. García-González, Francesca Focante, Angela Felicita Savino, Stefania Carpino, T. Gallina Toschi
{"title":"筛查工具与多元数据分析相结合,预测或确认初榨橄榄油的 Panel 检验分类","authors":"Ilaria Grigoletto, E. Casadei, F. Panni, E. Valli, Chiara Cevoli, A. Bendini, D. L. García-González, Francesca Focante, Angela Felicita Savino, Stefania Carpino, T. Gallina Toschi","doi":"10.1002/ejlt.202300211","DOIUrl":null,"url":null,"abstract":"A particular aspect of quality control of virgin olive oil (VOO) is the mandatory application, together with chemical and instrumental determinations, of a standardized and official method for sensory assessment. The latter, known as Panel test, is carried out by trained assessors and contributes to the classification of VOOs into three commercial categories (extra virgin, virgin, and lampante). One drawback of this method is related to the large number of samples to be analyzed, compared to the work capacity of a sensory panel, especially during the selection for purchase by companies that blend and market virgin oils and the quality control conducted by the authorities to verify the declared commercial category. For this reason, it is helpful to develop and validate robust and rapid screening methods, based on volatile fingerprints, to preclassify each sample into one of the three commercial categories. Considering the strict relation between volatile compounds and the main sensory attributes (fruity and defects), a gas‐chromatographic volatile fingerprint can be the right choice. In this paper, the comparison of two emerging techniques, namely, headspace‐gas chromatography‐ion mobility spectrometry (HS‐GC‐IMS) and flash‐gas chromatography (FGC), applied on a sample set of 49 VOOs, using calibrations previously built with a larger number of samples, is presented. The number of correctly classified samples, with respect to the commercial category determined by the Panel test, was satisfactory and comparable (92% for HS‐GC‐IMS, and 94% for FGC), confirming the effectiveness of both methods and the robustness of the predictive models.Practical Applications: The demand for rapid screening tools to reduce the number of samples to be assessed by the Panel test has increased in recent years. The validation of robust models and their joint adoption by companies that market VOOs as well as official control bodies could reduce nonconformities and increase the batches of VOO being controlled, thus better protecting the consumer. Therefore, it is desirable to have different tools available to analyze volatile compounds, together with the associated calibration models, along with detailed instructions for their application, to have different alternatives that suit the equipment of individual laboratories.","PeriodicalId":11988,"journal":{"name":"European Journal of Lipid Science and Technology","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Screening tools combined with multivariate data analysis to predict or confirm virgin olive oil classification by the Panel test\",\"authors\":\"Ilaria Grigoletto, E. Casadei, F. Panni, E. Valli, Chiara Cevoli, A. Bendini, D. L. García-González, Francesca Focante, Angela Felicita Savino, Stefania Carpino, T. Gallina Toschi\",\"doi\":\"10.1002/ejlt.202300211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A particular aspect of quality control of virgin olive oil (VOO) is the mandatory application, together with chemical and instrumental determinations, of a standardized and official method for sensory assessment. The latter, known as Panel test, is carried out by trained assessors and contributes to the classification of VOOs into three commercial categories (extra virgin, virgin, and lampante). One drawback of this method is related to the large number of samples to be analyzed, compared to the work capacity of a sensory panel, especially during the selection for purchase by companies that blend and market virgin oils and the quality control conducted by the authorities to verify the declared commercial category. For this reason, it is helpful to develop and validate robust and rapid screening methods, based on volatile fingerprints, to preclassify each sample into one of the three commercial categories. Considering the strict relation between volatile compounds and the main sensory attributes (fruity and defects), a gas‐chromatographic volatile fingerprint can be the right choice. In this paper, the comparison of two emerging techniques, namely, headspace‐gas chromatography‐ion mobility spectrometry (HS‐GC‐IMS) and flash‐gas chromatography (FGC), applied on a sample set of 49 VOOs, using calibrations previously built with a larger number of samples, is presented. The number of correctly classified samples, with respect to the commercial category determined by the Panel test, was satisfactory and comparable (92% for HS‐GC‐IMS, and 94% for FGC), confirming the effectiveness of both methods and the robustness of the predictive models.Practical Applications: The demand for rapid screening tools to reduce the number of samples to be assessed by the Panel test has increased in recent years. The validation of robust models and their joint adoption by companies that market VOOs as well as official control bodies could reduce nonconformities and increase the batches of VOO being controlled, thus better protecting the consumer. Therefore, it is desirable to have different tools available to analyze volatile compounds, together with the associated calibration models, along with detailed instructions for their application, to have different alternatives that suit the equipment of individual laboratories.\",\"PeriodicalId\":11988,\"journal\":{\"name\":\"European Journal of Lipid Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Lipid Science and Technology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1002/ejlt.202300211\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Lipid Science and Technology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1002/ejlt.202300211","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

初榨橄榄油(VOO)质量控制的一个特殊方面是,在进行化学和仪器测定的同时,还必须采用标准化的官方感官评估方法。后者被称为 "面板测试"(Panel test),由训练有素的评估员进行,有助于将初榨橄榄油分为三个商业类别(特级初榨、初榨和特级初榨)。这种方法的一个缺点是,与感官小组的工作能力相比,需要分析的样本数量较多,尤其是在初榨油调配和销售公司的采购选择过程中,以及当局为核实申报的商业类别而进行的质量控制过程中。因此,开发和验证基于挥发性指纹的可靠而快速的筛选方法,将每个样品预先划分为三个商业类别之一,是很有帮助的。考虑到挥发性化合物与主要感官属性(果味和缺陷)之间的密切关系,气相色谱挥发性指纹图谱可能是正确的选择。本文比较了两种新兴技术,即顶空气相色谱-离子迁移谱法(HS-GC-IMS)和闪速气相色谱法(FGC)。就小组测试确定的商业类别而言,正确分类的样品数量令人满意且具有可比性(HS-GC-IMS 为 92%,FGC 为 94%),证实了这两种方法的有效性和预测模型的稳健性:近年来,对快速筛查工具的需求与日俱增,以减少专家小组测试所需的样本数量。对稳健模型进行验证,并由销售 VOO 的公司和官方控制机构共同采用这些模型,可以减少不合格情况,增加受控制的 VOO 批次,从而更好地保护消费者。因此,最好能有不同的挥发性化合物分析工具,以及相关的校准模型和详细的应用说明,以提供适合各实验室设备的不同选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Screening tools combined with multivariate data analysis to predict or confirm virgin olive oil classification by the Panel test
A particular aspect of quality control of virgin olive oil (VOO) is the mandatory application, together with chemical and instrumental determinations, of a standardized and official method for sensory assessment. The latter, known as Panel test, is carried out by trained assessors and contributes to the classification of VOOs into three commercial categories (extra virgin, virgin, and lampante). One drawback of this method is related to the large number of samples to be analyzed, compared to the work capacity of a sensory panel, especially during the selection for purchase by companies that blend and market virgin oils and the quality control conducted by the authorities to verify the declared commercial category. For this reason, it is helpful to develop and validate robust and rapid screening methods, based on volatile fingerprints, to preclassify each sample into one of the three commercial categories. Considering the strict relation between volatile compounds and the main sensory attributes (fruity and defects), a gas‐chromatographic volatile fingerprint can be the right choice. In this paper, the comparison of two emerging techniques, namely, headspace‐gas chromatography‐ion mobility spectrometry (HS‐GC‐IMS) and flash‐gas chromatography (FGC), applied on a sample set of 49 VOOs, using calibrations previously built with a larger number of samples, is presented. The number of correctly classified samples, with respect to the commercial category determined by the Panel test, was satisfactory and comparable (92% for HS‐GC‐IMS, and 94% for FGC), confirming the effectiveness of both methods and the robustness of the predictive models.Practical Applications: The demand for rapid screening tools to reduce the number of samples to be assessed by the Panel test has increased in recent years. The validation of robust models and their joint adoption by companies that market VOOs as well as official control bodies could reduce nonconformities and increase the batches of VOO being controlled, thus better protecting the consumer. Therefore, it is desirable to have different tools available to analyze volatile compounds, together with the associated calibration models, along with detailed instructions for their application, to have different alternatives that suit the equipment of individual laboratories.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.50
自引率
0.00%
发文量
101
审稿时长
6-16 weeks
期刊介绍: The European Journal of Lipid Science and Technology is a peer-reviewed journal publishing original research articles, reviews, and other contributions on lipid related topics in food science and technology, biomedical science including clinical and pre-clinical research, nutrition, animal science, plant and microbial lipids, (bio)chemistry, oleochemistry, biotechnology, processing, physical chemistry, and analytics including lipidomics. A major focus of the journal is the synthesis of health related topics with applied aspects. Following is a selection of subject areas which are of special interest to EJLST: Animal and plant products for healthier foods including strategic feeding and transgenic crops Authentication and analysis of foods for ensuring food quality and safety Bioavailability of PUFA and other nutrients Dietary lipids and minor compounds, their specific roles in food products and in nutrition Food technology and processing for safer and healthier products Functional foods and nutraceuticals Lipidomics Lipid structuring and formulations Oleochemistry, lipid-derived polymers and biomaterials Processes using lipid-modifying enzymes The scope is not restricted to these areas. Submissions on topics at the interface of basic research and applications are strongly encouraged. The journal is the official organ the European Federation for the Science and Technology of Lipids (Euro Fed Lipid).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信