任意三角形/四边形网格上的新二次方/椭圆有限体积元解决方案

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Yanhui Zhou
{"title":"任意三角形/四边形网格上的新二次方/椭圆有限体积元解决方案","authors":"Yanhui Zhou","doi":"10.1002/num.23093","DOIUrl":null,"url":null,"abstract":"By postprocessing quadratic and eight‐node serendipity finite element solutions on arbitrary triangular and quadrilateral meshes, we obtain new quadratic/serendipity finite volume element solutions for solving anisotropic diffusion equations. The postprocessing procedure is implemented in each element independently, and we only need to solve a 6‐by‐6 (resp. 8‐by‐8) local linear algebraic system for triangular (resp. quadrilateral) element. The novelty of this paper is that, by designing some new quadratic dual meshes, and adding six/eight special constructed element‐wise bubble functions to quadratic/serendipity finite element solutions, we prove that the postprocessed solutions satisfy local conservation property on the new dual meshes. In particular, for any full anisotropic diffusion tensor, arbitrary triangular and quadrilateral meshes, we present a general framework to prove the existence and uniqueness of new quadratic/serendipity finite volume element solutions, which is better than some existing ones. That is, the existing theoretical results are improved, especially we extend the traditional rectangular assumption to arbitrary convex quadrilateral mesh. As a byproduct, we also prove that the new solutions converge to exact solution with optimal convergence rates under and norms on primal arbitrary triangular/quasi–parallelogram meshes. Finally, several numerical examples are carried out to validate the theoretical findings.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New quadratic/serendipity finite volume element solutions on arbitrary triangular/quadrilateral meshes\",\"authors\":\"Yanhui Zhou\",\"doi\":\"10.1002/num.23093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By postprocessing quadratic and eight‐node serendipity finite element solutions on arbitrary triangular and quadrilateral meshes, we obtain new quadratic/serendipity finite volume element solutions for solving anisotropic diffusion equations. The postprocessing procedure is implemented in each element independently, and we only need to solve a 6‐by‐6 (resp. 8‐by‐8) local linear algebraic system for triangular (resp. quadrilateral) element. The novelty of this paper is that, by designing some new quadratic dual meshes, and adding six/eight special constructed element‐wise bubble functions to quadratic/serendipity finite element solutions, we prove that the postprocessed solutions satisfy local conservation property on the new dual meshes. In particular, for any full anisotropic diffusion tensor, arbitrary triangular and quadrilateral meshes, we present a general framework to prove the existence and uniqueness of new quadratic/serendipity finite volume element solutions, which is better than some existing ones. That is, the existing theoretical results are improved, especially we extend the traditional rectangular assumption to arbitrary convex quadrilateral mesh. As a byproduct, we also prove that the new solutions converge to exact solution with optimal convergence rates under and norms on primal arbitrary triangular/quasi–parallelogram meshes. Finally, several numerical examples are carried out to validate the theoretical findings.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/num.23093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/num.23093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

通过对任意三角形和四边形网格上的二次和八节点偶然性有限元解进行后处理,我们得到了求解各向异性扩散方程的新二次/偶然性有限体积元解。后处理程序在每个元素中独立实现,我们只需求解三角形(或四边形)元素的 6 乘 6(或 8 乘 8)局部线性代数系统。本文的新颖之处在于,通过设计一些新的二次元对偶网格,并在二次元/椭圆有限元解中添加六/八个特殊构造的元素气泡函数,我们证明了后处理解在新的对偶网格上满足局部守恒特性。特别是,对于任意全各向异性扩散张量、任意三角形和四边形网格,我们提出了证明新二次元/椭圆有限元解的存在性和唯一性的一般框架,这比现有的一些框架更好。也就是说,现有的理论结果得到了改进,特别是我们将传统的矩形假设扩展到了任意凸四边形网格。作为副产品,我们还证明了在原始任意三角形/准平行四边形网格下和规范下,新解以最佳收敛速率收敛到精确解。最后,我们通过几个数值实例验证了理论结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New quadratic/serendipity finite volume element solutions on arbitrary triangular/quadrilateral meshes
By postprocessing quadratic and eight‐node serendipity finite element solutions on arbitrary triangular and quadrilateral meshes, we obtain new quadratic/serendipity finite volume element solutions for solving anisotropic diffusion equations. The postprocessing procedure is implemented in each element independently, and we only need to solve a 6‐by‐6 (resp. 8‐by‐8) local linear algebraic system for triangular (resp. quadrilateral) element. The novelty of this paper is that, by designing some new quadratic dual meshes, and adding six/eight special constructed element‐wise bubble functions to quadratic/serendipity finite element solutions, we prove that the postprocessed solutions satisfy local conservation property on the new dual meshes. In particular, for any full anisotropic diffusion tensor, arbitrary triangular and quadrilateral meshes, we present a general framework to prove the existence and uniqueness of new quadratic/serendipity finite volume element solutions, which is better than some existing ones. That is, the existing theoretical results are improved, especially we extend the traditional rectangular assumption to arbitrary convex quadrilateral mesh. As a byproduct, we also prove that the new solutions converge to exact solution with optimal convergence rates under and norms on primal arbitrary triangular/quasi–parallelogram meshes. Finally, several numerical examples are carried out to validate the theoretical findings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信