金属玻璃中随应变变化的弛豫动力学转变

IF 1.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Wenqing Zhu, Yao Deng, Junjie Liu, Xin Yan, Xioading Wei
{"title":"金属玻璃中随应变变化的弛豫动力学转变","authors":"Wenqing Zhu, Yao Deng, Junjie Liu, Xin Yan, Xioading Wei","doi":"10.1088/1361-651x/ad29b1","DOIUrl":null,"url":null,"abstract":"\n Non-exponential relaxation is pervasive in glassy systems and intimately related to unique thermodynamic features, such as glass transition and aging; however, the underlying mechanisms remain unclear. The time scale of non-exponential relaxation goes beyond the time limit (nanosecond) of classic molecular dynamics simulation. Thus, the advanced time scaling atomistic approach is necessary to interpret the relaxation mechanisms at the experimental timescale. Here, we adopted autonomous basin climbing (ABC) to evaluate the long-time stress relaxation. At the same time, based on the energy minimization principle, we carried out simulations at continuum levels on the long-time stress relaxation kinetics of Cu-Zr metallic glass over timescales greater than 100 s. Combined with atomistic and continuum models, we demonstrate that a strain-dependent transition from compressed to stretched exponentials would happen, consistent with recent experimental observations on metallic glasses. Further examination of the spatial and temporal correlations of stress and plastic strain reveals two predominant driving forces: the thermal energy gradient governs in the compressed regime and leads to a release of the local internal stress; in the stretched regime, the strain energy gradient rules and causes long-range structural rearrangements. The discovery of the competition between two driving forces advances our understanding of the nature of aging dynamics in disordered solids.","PeriodicalId":18648,"journal":{"name":"Modelling and Simulation in Materials Science and Engineering","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strain-dependent Transition of the Relaxation Dynamics in Metallic Glasses\",\"authors\":\"Wenqing Zhu, Yao Deng, Junjie Liu, Xin Yan, Xioading Wei\",\"doi\":\"10.1088/1361-651x/ad29b1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Non-exponential relaxation is pervasive in glassy systems and intimately related to unique thermodynamic features, such as glass transition and aging; however, the underlying mechanisms remain unclear. The time scale of non-exponential relaxation goes beyond the time limit (nanosecond) of classic molecular dynamics simulation. Thus, the advanced time scaling atomistic approach is necessary to interpret the relaxation mechanisms at the experimental timescale. Here, we adopted autonomous basin climbing (ABC) to evaluate the long-time stress relaxation. At the same time, based on the energy minimization principle, we carried out simulations at continuum levels on the long-time stress relaxation kinetics of Cu-Zr metallic glass over timescales greater than 100 s. Combined with atomistic and continuum models, we demonstrate that a strain-dependent transition from compressed to stretched exponentials would happen, consistent with recent experimental observations on metallic glasses. Further examination of the spatial and temporal correlations of stress and plastic strain reveals two predominant driving forces: the thermal energy gradient governs in the compressed regime and leads to a release of the local internal stress; in the stretched regime, the strain energy gradient rules and causes long-range structural rearrangements. The discovery of the competition between two driving forces advances our understanding of the nature of aging dynamics in disordered solids.\",\"PeriodicalId\":18648,\"journal\":{\"name\":\"Modelling and Simulation in Materials Science and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modelling and Simulation in Materials Science and Engineering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-651x/ad29b1\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modelling and Simulation in Materials Science and Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-651x/ad29b1","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

非指数弛豫在玻璃态体系中普遍存在,并与玻璃转化和老化等独特的热力学特征密切相关;然而,其基本机制仍不清楚。非指数弛豫的时间尺度超出了经典分子动力学模拟的时间限制(纳秒)。因此,要解释实验时间尺度上的弛豫机制,就必须采用先进的时间尺度原子方法。在此,我们采用自主盆地爬升(ABC)来评估长时应力弛豫。同时,基于能量最小化原则,我们在连续体水平上对 Cu-Zr 金属玻璃在大于 100 秒的时间尺度上的长时应力弛豫动力学进行了模拟。结合原子模型和连续体模型,我们证明了从压缩指数到拉伸指数的应变依赖性转变将会发生,这与最近在金属玻璃上的实验观察结果一致。对应力和塑性应变的空间和时间相关性的进一步研究揭示了两种占主导地位的驱动力:在压缩状态下,热能梯度起主导作用,并导致局部内应力的释放;在拉伸状态下,应变能梯度起主导作用,并导致长程结构重排。两种驱动力之间竞争的发现推进了我们对无序固体老化动力学本质的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strain-dependent Transition of the Relaxation Dynamics in Metallic Glasses
Non-exponential relaxation is pervasive in glassy systems and intimately related to unique thermodynamic features, such as glass transition and aging; however, the underlying mechanisms remain unclear. The time scale of non-exponential relaxation goes beyond the time limit (nanosecond) of classic molecular dynamics simulation. Thus, the advanced time scaling atomistic approach is necessary to interpret the relaxation mechanisms at the experimental timescale. Here, we adopted autonomous basin climbing (ABC) to evaluate the long-time stress relaxation. At the same time, based on the energy minimization principle, we carried out simulations at continuum levels on the long-time stress relaxation kinetics of Cu-Zr metallic glass over timescales greater than 100 s. Combined with atomistic and continuum models, we demonstrate that a strain-dependent transition from compressed to stretched exponentials would happen, consistent with recent experimental observations on metallic glasses. Further examination of the spatial and temporal correlations of stress and plastic strain reveals two predominant driving forces: the thermal energy gradient governs in the compressed regime and leads to a release of the local internal stress; in the stretched regime, the strain energy gradient rules and causes long-range structural rearrangements. The discovery of the competition between two driving forces advances our understanding of the nature of aging dynamics in disordered solids.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
5.60%
发文量
96
审稿时长
1.7 months
期刊介绍: Serving the multidisciplinary materials community, the journal aims to publish new research work that advances the understanding and prediction of material behaviour at scales from atomistic to macroscopic through modelling and simulation. Subject coverage: Modelling and/or simulation across materials science that emphasizes fundamental materials issues advancing the understanding and prediction of material behaviour. Interdisciplinary research that tackles challenging and complex materials problems where the governing phenomena may span different scales of materials behaviour, with an emphasis on the development of quantitative approaches to explain and predict experimental observations. Material processing that advances the fundamental materials science and engineering underpinning the connection between processing and properties. Covering all classes of materials, and mechanical, microstructural, electronic, chemical, biological, and optical properties.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信