{"title":"聚苯乙烯靶向纳米粒子对重症急性胰腺炎肺损伤及 NOX2/ROS/NF-κB 通路的影响","authors":"Changbo Liu, Liya Luo, Shuzhen Suo, Yongkang Song","doi":"10.1166/jbn.2024.3783","DOIUrl":null,"url":null,"abstract":"Relationship between polyethylene targeting nanoparticles and key components of the NOX2/ROS/NF-κB signaling pathway has not yet been fully clarified, and their regulatory role in lung injury in severe acute pancreatitis has not yet been confirmed. In this study, severe\n acute pancreatitis lung injury cells were exposed to polyethylene targeting nanoparticles and MTT method was used to detect cell proliferation. Cell cycle and apoptosis rate were detected using flow cytometry and the expression of NOX2/ROS/NF-κB pathway was detected. The compound\n polyethylene targeting nanoparticles inhibited proliferation of lung-damaged cells in severe acute pancreatitis dose-dependently (5, 10 and 20 μmol/L), induced G2/M phase arrest, and increased cell apoptosis. In addition, it reduced the expression of NOX2, ROS, and NF-κB,\n indicating that NOX2/ROS/NF-κB pathway may be inhibited. Polystyrene targeting nanoparticles reduced the expression of IL-6, TNF-α, JAK, STAT, and IL-10. As a targeted drug delivery system, nano-drug-carrying systems help to dissolve drugs that are difficult to dissolve\n in the drug solution and intervene in the corresponding tissues and cells in a targeted manner. The results of this study showed that polymer-targeted nano-drug systems could regulate the growth of lung-damaged cells in severe acute pancreatitis. Polyethylene targeting nanoparticles may be\n effective in inhibiting inflammation in lung-damaged cells in severe acute pancreatitis via regulation of NOX2/ROS/NF-κB pathway.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"38 ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Polystyrene Targeting Nanoparticles on Lung Injury in Severe Acute Pancreatitis and NOX2/ROS/NF-κB Pathway\",\"authors\":\"Changbo Liu, Liya Luo, Shuzhen Suo, Yongkang Song\",\"doi\":\"10.1166/jbn.2024.3783\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Relationship between polyethylene targeting nanoparticles and key components of the NOX2/ROS/NF-κB signaling pathway has not yet been fully clarified, and their regulatory role in lung injury in severe acute pancreatitis has not yet been confirmed. In this study, severe\\n acute pancreatitis lung injury cells were exposed to polyethylene targeting nanoparticles and MTT method was used to detect cell proliferation. Cell cycle and apoptosis rate were detected using flow cytometry and the expression of NOX2/ROS/NF-κB pathway was detected. The compound\\n polyethylene targeting nanoparticles inhibited proliferation of lung-damaged cells in severe acute pancreatitis dose-dependently (5, 10 and 20 μmol/L), induced G2/M phase arrest, and increased cell apoptosis. In addition, it reduced the expression of NOX2, ROS, and NF-κB,\\n indicating that NOX2/ROS/NF-κB pathway may be inhibited. Polystyrene targeting nanoparticles reduced the expression of IL-6, TNF-α, JAK, STAT, and IL-10. As a targeted drug delivery system, nano-drug-carrying systems help to dissolve drugs that are difficult to dissolve\\n in the drug solution and intervene in the corresponding tissues and cells in a targeted manner. The results of this study showed that polymer-targeted nano-drug systems could regulate the growth of lung-damaged cells in severe acute pancreatitis. Polyethylene targeting nanoparticles may be\\n effective in inhibiting inflammation in lung-damaged cells in severe acute pancreatitis via regulation of NOX2/ROS/NF-κB pathway.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\"38 \",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1166/jbn.2024.3783\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1166/jbn.2024.3783","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Effect of Polystyrene Targeting Nanoparticles on Lung Injury in Severe Acute Pancreatitis and NOX2/ROS/NF-κB Pathway
Relationship between polyethylene targeting nanoparticles and key components of the NOX2/ROS/NF-κB signaling pathway has not yet been fully clarified, and their regulatory role in lung injury in severe acute pancreatitis has not yet been confirmed. In this study, severe
acute pancreatitis lung injury cells were exposed to polyethylene targeting nanoparticles and MTT method was used to detect cell proliferation. Cell cycle and apoptosis rate were detected using flow cytometry and the expression of NOX2/ROS/NF-κB pathway was detected. The compound
polyethylene targeting nanoparticles inhibited proliferation of lung-damaged cells in severe acute pancreatitis dose-dependently (5, 10 and 20 μmol/L), induced G2/M phase arrest, and increased cell apoptosis. In addition, it reduced the expression of NOX2, ROS, and NF-κB,
indicating that NOX2/ROS/NF-κB pathway may be inhibited. Polystyrene targeting nanoparticles reduced the expression of IL-6, TNF-α, JAK, STAT, and IL-10. As a targeted drug delivery system, nano-drug-carrying systems help to dissolve drugs that are difficult to dissolve
in the drug solution and intervene in the corresponding tissues and cells in a targeted manner. The results of this study showed that polymer-targeted nano-drug systems could regulate the growth of lung-damaged cells in severe acute pancreatitis. Polyethylene targeting nanoparticles may be
effective in inhibiting inflammation in lung-damaged cells in severe acute pancreatitis via regulation of NOX2/ROS/NF-κB pathway.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.