使用纸质微流体条带进行唾液葡萄糖床旁监测的便携式光学生物传感器

IF 10.61 Q3 Biochemistry, Genetics and Molecular Biology
Shweta Panwar , Paulami Sarkar , D. Syed Kasim , Raksha Anand , Akanksha Priya , Shyam Prakash , Sandeep Kumar Jha
{"title":"使用纸质微流体条带进行唾液葡萄糖床旁监测的便携式光学生物传感器","authors":"Shweta Panwar ,&nbsp;Paulami Sarkar ,&nbsp;D. Syed Kasim ,&nbsp;Raksha Anand ,&nbsp;Akanksha Priya ,&nbsp;Shyam Prakash ,&nbsp;Sandeep Kumar Jha","doi":"10.1016/j.biosx.2024.100452","DOIUrl":null,"url":null,"abstract":"<div><p>The manuscript describes a technique for fabrication and validation of a standalone handheld optical biosensor designed for non-invasive monitoring of glucose through saliva. In this cost-effective process, a 3D-printed glucose test strip was filled with sieving paste comprising of cellulose, polyethylene glycol (PEG), polyvinyl alcohol (PVA) and glycerol, onto which, glucose oxidase-peroxidase (GOD-POD) enzymes and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) chromogenic dye were co-immobilized. The enzymatic reaction produced H<sub>2</sub>O<sub>2</sub> as by-product with which the ABTS reacted, leading to colour change on the detection zone of the strip which was detected by the developed glucometer. The in-house developed meter included an optically isolated section in its structure for inserting the strip to prevent interference from the ambient light conditions. The biosensor exhibited a broad detection range of 28–204 mg/dL of glucose concentration, with a sensitivity of 26.89 count/mg/dL and a limit of detection (LOD) at 28 mg/dL, within a response time of 120 s. The device along with strips was validated with clinical samples, comparing salivary glucose levels (SGL) to blood glucose levels (BGL) using a commercial glucometer i.e., Accu-Chek Active. Student's t-test on clinical data yielded p-values of 0.018, 0.01, 0.008, and 0.003 in fasting and post-prandial samples of non-diabetic and diabetic patients respectively, which represents a significant correlation. The device also passed Clarke's error grid analysis and is hence considered medically acceptable. The low-cost and simple-to-use saliva-based glucometer should be ideally suited for mass screening of diabetes as well as day-to-day health check-ups in a non-invasive and painless manner.</p></div>","PeriodicalId":260,"journal":{"name":"Biosensors and Bioelectronics: X","volume":"17 ","pages":"Article 100452"},"PeriodicalIF":10.6100,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590137024000165/pdfft?md5=6079c2eb7aa736c6042d9fe826728f82&pid=1-s2.0-S2590137024000165-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Portable optical biosensor for point-of-care monitoring of salivary glucose using a paper-based microfluidic strip\",\"authors\":\"Shweta Panwar ,&nbsp;Paulami Sarkar ,&nbsp;D. Syed Kasim ,&nbsp;Raksha Anand ,&nbsp;Akanksha Priya ,&nbsp;Shyam Prakash ,&nbsp;Sandeep Kumar Jha\",\"doi\":\"10.1016/j.biosx.2024.100452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The manuscript describes a technique for fabrication and validation of a standalone handheld optical biosensor designed for non-invasive monitoring of glucose through saliva. In this cost-effective process, a 3D-printed glucose test strip was filled with sieving paste comprising of cellulose, polyethylene glycol (PEG), polyvinyl alcohol (PVA) and glycerol, onto which, glucose oxidase-peroxidase (GOD-POD) enzymes and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) chromogenic dye were co-immobilized. The enzymatic reaction produced H<sub>2</sub>O<sub>2</sub> as by-product with which the ABTS reacted, leading to colour change on the detection zone of the strip which was detected by the developed glucometer. The in-house developed meter included an optically isolated section in its structure for inserting the strip to prevent interference from the ambient light conditions. The biosensor exhibited a broad detection range of 28–204 mg/dL of glucose concentration, with a sensitivity of 26.89 count/mg/dL and a limit of detection (LOD) at 28 mg/dL, within a response time of 120 s. The device along with strips was validated with clinical samples, comparing salivary glucose levels (SGL) to blood glucose levels (BGL) using a commercial glucometer i.e., Accu-Chek Active. Student's t-test on clinical data yielded p-values of 0.018, 0.01, 0.008, and 0.003 in fasting and post-prandial samples of non-diabetic and diabetic patients respectively, which represents a significant correlation. The device also passed Clarke's error grid analysis and is hence considered medically acceptable. The low-cost and simple-to-use saliva-based glucometer should be ideally suited for mass screening of diabetes as well as day-to-day health check-ups in a non-invasive and painless manner.</p></div>\",\"PeriodicalId\":260,\"journal\":{\"name\":\"Biosensors and Bioelectronics: X\",\"volume\":\"17 \",\"pages\":\"Article 100452\"},\"PeriodicalIF\":10.6100,\"publicationDate\":\"2024-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590137024000165/pdfft?md5=6079c2eb7aa736c6042d9fe826728f82&pid=1-s2.0-S2590137024000165-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosensors and Bioelectronics: X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590137024000165\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590137024000165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

手稿介绍了一种用于通过唾液无创监测葡萄糖的独立手持式光学生物传感器的制造和验证技术。在这一经济高效的工艺中,3D 打印的葡萄糖试纸充满了由纤维素、聚乙二醇(PEG)、聚乙烯醇(PVA)和甘油组成的筛浆,葡萄糖氧化酶-过氧化物酶(GOD-POD)和 2,2′-偶氮双(3-乙基苯并噻唑啉-6-磺酸)(ABTS)致色染料被共同固定在筛浆上。酶反应产生的副产物 H2O2 与 ABTS 发生反应,导致色带检测区的颜色发生变化,并由开发的血糖仪进行检测。内部开发的血糖仪在其结构中包括一个光学隔离部分,用于插入条带,以防止环境光条件的干扰。该生物传感器的葡萄糖浓度检测范围为 28-204 毫克/分升,灵敏度为 26.89 次/毫克/分升,检测限(LOD)为 28 毫克/分升,响应时间为 120 秒。该装置和血糖条通过临床样本进行了验证,使用商用血糖仪 Accu-Chek Active 比较了唾液葡萄糖水平(SGL)和血糖水平(BGL)。通过对临床数据进行学生 t 检验,非糖尿病患者和糖尿病患者空腹和餐后样本的 p 值分别为 0.018、0.01、0.008 和 0.003,这表明两者之间存在显著的相关性。该装置还通过了克拉克误差网格分析,因此在医学上是可以接受的。这种基于唾液的血糖仪成本低、使用简单,非常适合用于大规模的糖尿病筛查,以及以非侵入性和无痛的方式进行日常健康检查。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Portable optical biosensor for point-of-care monitoring of salivary glucose using a paper-based microfluidic strip

The manuscript describes a technique for fabrication and validation of a standalone handheld optical biosensor designed for non-invasive monitoring of glucose through saliva. In this cost-effective process, a 3D-printed glucose test strip was filled with sieving paste comprising of cellulose, polyethylene glycol (PEG), polyvinyl alcohol (PVA) and glycerol, onto which, glucose oxidase-peroxidase (GOD-POD) enzymes and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) chromogenic dye were co-immobilized. The enzymatic reaction produced H2O2 as by-product with which the ABTS reacted, leading to colour change on the detection zone of the strip which was detected by the developed glucometer. The in-house developed meter included an optically isolated section in its structure for inserting the strip to prevent interference from the ambient light conditions. The biosensor exhibited a broad detection range of 28–204 mg/dL of glucose concentration, with a sensitivity of 26.89 count/mg/dL and a limit of detection (LOD) at 28 mg/dL, within a response time of 120 s. The device along with strips was validated with clinical samples, comparing salivary glucose levels (SGL) to blood glucose levels (BGL) using a commercial glucometer i.e., Accu-Chek Active. Student's t-test on clinical data yielded p-values of 0.018, 0.01, 0.008, and 0.003 in fasting and post-prandial samples of non-diabetic and diabetic patients respectively, which represents a significant correlation. The device also passed Clarke's error grid analysis and is hence considered medically acceptable. The low-cost and simple-to-use saliva-based glucometer should be ideally suited for mass screening of diabetes as well as day-to-day health check-ups in a non-invasive and painless manner.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biosensors and Bioelectronics: X
Biosensors and Bioelectronics: X Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
4.60
自引率
0.00%
发文量
166
审稿时长
54 days
期刊介绍: Biosensors and Bioelectronics: X, an open-access companion journal of Biosensors and Bioelectronics, boasts a 2020 Impact Factor of 10.61 (Journal Citation Reports, Clarivate Analytics 2021). Offering authors the opportunity to share their innovative work freely and globally, Biosensors and Bioelectronics: X aims to be a timely and permanent source of information. The journal publishes original research papers, review articles, communications, editorial highlights, perspectives, opinions, and commentaries at the intersection of technological advancements and high-impact applications. Manuscripts submitted to Biosensors and Bioelectronics: X are assessed based on originality and innovation in technology development or applications, aligning with the journal's goal to cater to a broad audience interested in this dynamic field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信