优化核磁共振信号参数线性变化的测量方法

IF 2 3区 化学 Q3 BIOCHEMICAL RESEARCH METHODS
Javier Agustin Romero , Krzysztof Kazimierczuk , Paweł Kasprzak
{"title":"优化核磁共振信号参数线性变化的测量方法","authors":"Javier Agustin Romero ,&nbsp;Krzysztof Kazimierczuk ,&nbsp;Paweł Kasprzak","doi":"10.1016/j.jmr.2024.107632","DOIUrl":null,"url":null,"abstract":"<div><p>Serial NMR experiments are commonly applied in variable-temperature studies, reaction monitoring, and other tasks. The resonance frequencies often shift linearly over the series, and the shift rates help to characterize the studied system. They can be determined using a classical fitting of peak positions or a more advanced method of Radon transform. However, the optimal procedure for data collection remains to be determined. In this paper, we discuss how to invest experimental time, i.e., whether to measure more scans at the expense of the number of spectra or vice versa. The results indicate that classical fitting provides slightly less error than the Radon transform, although the latter can be the method of choice for a low signal-to-noise ratio. We demonstrate this fact through theoretical consideration, simulations, and an experiment. Finally, we extend our considerations to the linear fitting of peak amplitudes. Interestingly, the optimal setup for measuring peak height changes differs from the one for resonance frequency changes — fewer spectra with more scans provide better results.</p></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"360 ","pages":"Article 107632"},"PeriodicalIF":2.0000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing measurements of linear changes of NMR signal parameters\",\"authors\":\"Javier Agustin Romero ,&nbsp;Krzysztof Kazimierczuk ,&nbsp;Paweł Kasprzak\",\"doi\":\"10.1016/j.jmr.2024.107632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Serial NMR experiments are commonly applied in variable-temperature studies, reaction monitoring, and other tasks. The resonance frequencies often shift linearly over the series, and the shift rates help to characterize the studied system. They can be determined using a classical fitting of peak positions or a more advanced method of Radon transform. However, the optimal procedure for data collection remains to be determined. In this paper, we discuss how to invest experimental time, i.e., whether to measure more scans at the expense of the number of spectra or vice versa. The results indicate that classical fitting provides slightly less error than the Radon transform, although the latter can be the method of choice for a low signal-to-noise ratio. We demonstrate this fact through theoretical consideration, simulations, and an experiment. Finally, we extend our considerations to the linear fitting of peak amplitudes. Interestingly, the optimal setup for measuring peak height changes differs from the one for resonance frequency changes — fewer spectra with more scans provide better results.</p></div>\",\"PeriodicalId\":16267,\"journal\":{\"name\":\"Journal of magnetic resonance\",\"volume\":\"360 \",\"pages\":\"Article 107632\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of magnetic resonance\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1090780724000168\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of magnetic resonance","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1090780724000168","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

串联核磁共振实验通常用于变温研究、反应监测和其他任务。共振频率通常会在序列中发生线性移动,移动速率有助于描述所研究系统的特征。共振频率可以通过经典的峰值位置拟合或更先进的拉顿变换来确定。然而,数据收集的最佳程序仍有待确定。在本文中,我们讨论了如何投入实验时间,即是以牺牲光谱数量为代价测量更多扫描,还是反之亦然。结果表明,经典拟合的误差略小于 Radon 变换,尽管后者是低信噪比情况下的首选方法。我们通过理论考虑、模拟和实验证明了这一事实。最后,我们将考虑范围扩大到峰值振幅的线性拟合。有趣的是,测量峰高变化的最佳设置与测量共振频率变化的最佳设置不同--扫描次数越多,光谱越少,结果越好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Optimizing measurements of linear changes of NMR signal parameters

Optimizing measurements of linear changes of NMR signal parameters

Serial NMR experiments are commonly applied in variable-temperature studies, reaction monitoring, and other tasks. The resonance frequencies often shift linearly over the series, and the shift rates help to characterize the studied system. They can be determined using a classical fitting of peak positions or a more advanced method of Radon transform. However, the optimal procedure for data collection remains to be determined. In this paper, we discuss how to invest experimental time, i.e., whether to measure more scans at the expense of the number of spectra or vice versa. The results indicate that classical fitting provides slightly less error than the Radon transform, although the latter can be the method of choice for a low signal-to-noise ratio. We demonstrate this fact through theoretical consideration, simulations, and an experiment. Finally, we extend our considerations to the linear fitting of peak amplitudes. Interestingly, the optimal setup for measuring peak height changes differs from the one for resonance frequency changes — fewer spectra with more scans provide better results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
13.60%
发文量
150
审稿时长
69 days
期刊介绍: The Journal of Magnetic Resonance presents original technical and scientific papers in all aspects of magnetic resonance, including nuclear magnetic resonance spectroscopy (NMR) of solids and liquids, electron spin/paramagnetic resonance (EPR), in vivo magnetic resonance imaging (MRI) and spectroscopy (MRS), nuclear quadrupole resonance (NQR) and magnetic resonance phenomena at nearly zero fields or in combination with optics. The Journal''s main aims include deepening the physical principles underlying all these spectroscopies, publishing significant theoretical and experimental results leading to spectral and spatial progress in these areas, and opening new MR-based applications in chemistry, biology and medicine. The Journal also seeks descriptions of novel apparatuses, new experimental protocols, and new procedures of data analysis and interpretation - including computational and quantum-mechanical methods - capable of advancing MR spectroscopy and imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信