{"title":"纳米结构亚铜金和氧化银复合纳米壳对角膜炎的抗菌效果","authors":"Chen Wang, Yang Liu, Mingchang Zhang","doi":"10.1166/jbn.2024.3764","DOIUrl":null,"url":null,"abstract":"We developed novel inorganic nanomaterials to combat drug-resistant bacterial infections in keratitis. These infections cause rapid severe corneal ulcers. Traditional antibiotics face challenges due to bacterial resistance. We investigated new therapies by designing nanomaterials. In\n an animal model of diabetic keratitis, we studied the materials’ antibacterial properties and mechanisms. In vitro, nanomaterials displayed strong antibacterial effects, confirmed by quantitative analysis. In vivo, using thermal imaging, wound closure monitoring, clinical\n scores, and histopathology, we demonstrated nanomaterials’ efficacy against infections. Toxicity evaluations, including weight monitoring, hemolysis, biochemical, hematological analyses, and organ histology, revealed no adverse effects on the body or organs. Confocal microscopy showed\n effective bacterial eradication using nanomaterials combined with near-infrared laser treatment. Minimal impact on red blood cells was observed at therapeutic concentrations. Nanomaterials, particularly gold-silver-cuprous oxide composite nanoshells, demonstrated potent resistance against\n drug-resistant infections. Photothermal treatment using nanomaterials and near-infrared laser showed promise without harming normal tissues, blood, or organs. Our findings offer a potential clinical solution for keratitis treatment.","PeriodicalId":15260,"journal":{"name":"Journal of biomedical nanotechnology","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antibacterial Effect of Nanostructured Cuprous Gold and Silver Oxide Composite Nanoshell on Keratitis\",\"authors\":\"Chen Wang, Yang Liu, Mingchang Zhang\",\"doi\":\"10.1166/jbn.2024.3764\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We developed novel inorganic nanomaterials to combat drug-resistant bacterial infections in keratitis. These infections cause rapid severe corneal ulcers. Traditional antibiotics face challenges due to bacterial resistance. We investigated new therapies by designing nanomaterials. In\\n an animal model of diabetic keratitis, we studied the materials’ antibacterial properties and mechanisms. In vitro, nanomaterials displayed strong antibacterial effects, confirmed by quantitative analysis. In vivo, using thermal imaging, wound closure monitoring, clinical\\n scores, and histopathology, we demonstrated nanomaterials’ efficacy against infections. Toxicity evaluations, including weight monitoring, hemolysis, biochemical, hematological analyses, and organ histology, revealed no adverse effects on the body or organs. Confocal microscopy showed\\n effective bacterial eradication using nanomaterials combined with near-infrared laser treatment. Minimal impact on red blood cells was observed at therapeutic concentrations. Nanomaterials, particularly gold-silver-cuprous oxide composite nanoshells, demonstrated potent resistance against\\n drug-resistant infections. Photothermal treatment using nanomaterials and near-infrared laser showed promise without harming normal tissues, blood, or organs. Our findings offer a potential clinical solution for keratitis treatment.\",\"PeriodicalId\":15260,\"journal\":{\"name\":\"Journal of biomedical nanotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biomedical nanotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1166/jbn.2024.3764\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1166/jbn.2024.3764","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
Antibacterial Effect of Nanostructured Cuprous Gold and Silver Oxide Composite Nanoshell on Keratitis
We developed novel inorganic nanomaterials to combat drug-resistant bacterial infections in keratitis. These infections cause rapid severe corneal ulcers. Traditional antibiotics face challenges due to bacterial resistance. We investigated new therapies by designing nanomaterials. In
an animal model of diabetic keratitis, we studied the materials’ antibacterial properties and mechanisms. In vitro, nanomaterials displayed strong antibacterial effects, confirmed by quantitative analysis. In vivo, using thermal imaging, wound closure monitoring, clinical
scores, and histopathology, we demonstrated nanomaterials’ efficacy against infections. Toxicity evaluations, including weight monitoring, hemolysis, biochemical, hematological analyses, and organ histology, revealed no adverse effects on the body or organs. Confocal microscopy showed
effective bacterial eradication using nanomaterials combined with near-infrared laser treatment. Minimal impact on red blood cells was observed at therapeutic concentrations. Nanomaterials, particularly gold-silver-cuprous oxide composite nanoshells, demonstrated potent resistance against
drug-resistant infections. Photothermal treatment using nanomaterials and near-infrared laser showed promise without harming normal tissues, blood, or organs. Our findings offer a potential clinical solution for keratitis treatment.