基于 UNet-LSTM 网络 (ULN) 的轨道电路故障诊断方法

IF 1.2 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
Weijie Tao, Xiaowei Li, Zheng Li
{"title":"基于 UNet-LSTM 网络 (ULN) 的轨道电路故障诊断方法","authors":"Weijie Tao, Xiaowei Li, Zheng Li","doi":"10.1155/2024/1547428","DOIUrl":null,"url":null,"abstract":"As a commonly used mode of transportation in people’s daily lives, the normal operation of railway transportation is crucial. The track circuit, as a key component of the railway transportation system, is prone to malfunctions due to environmental factors. However, the current method of inspecting track circuit faults still relies on the experience of on-site personnel. In order to improve the efficiency and accuracy of fault diagnosis, we propose to establish an intelligent fault diagnosis system. Considering that the fault data are a one-dimensional time series, this paper presents a fault diagnosis method based on the UNet-LSTM network (ULN). The LSTM network is established on the basis of fault data and used for ZPW-2000A track circuit fault diagnosis. However, the use of a single LSTM network has a high error rate in the common fault diagnosis of track circuits. Therefore, this paper proposes a feature extraction method based on the UNet network. This method is used to extract the features of the original data and then input them into the LSTM network for fault diagnosis. Through experiments with on-site fault data, it has been verified that this method can accurately classify seven common track circuit faults. Finally, the superiority of the method is verified by comparing it with other commonly used fault classification methods.","PeriodicalId":46573,"journal":{"name":"Journal of Electrical and Computer Engineering","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Track Circuits Fault Diagnosis Method Based on the UNet-LSTM Network (ULN)\",\"authors\":\"Weijie Tao, Xiaowei Li, Zheng Li\",\"doi\":\"10.1155/2024/1547428\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a commonly used mode of transportation in people’s daily lives, the normal operation of railway transportation is crucial. The track circuit, as a key component of the railway transportation system, is prone to malfunctions due to environmental factors. However, the current method of inspecting track circuit faults still relies on the experience of on-site personnel. In order to improve the efficiency and accuracy of fault diagnosis, we propose to establish an intelligent fault diagnosis system. Considering that the fault data are a one-dimensional time series, this paper presents a fault diagnosis method based on the UNet-LSTM network (ULN). The LSTM network is established on the basis of fault data and used for ZPW-2000A track circuit fault diagnosis. However, the use of a single LSTM network has a high error rate in the common fault diagnosis of track circuits. Therefore, this paper proposes a feature extraction method based on the UNet network. This method is used to extract the features of the original data and then input them into the LSTM network for fault diagnosis. Through experiments with on-site fault data, it has been verified that this method can accurately classify seven common track circuit faults. Finally, the superiority of the method is verified by comparing it with other commonly used fault classification methods.\",\"PeriodicalId\":46573,\"journal\":{\"name\":\"Journal of Electrical and Computer Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electrical and Computer Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/1547428\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2024/1547428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

作为人们日常生活中常用的交通工具,铁路运输的正常运行至关重要。轨道电路作为铁路运输系统的重要组成部分,很容易受环境因素的影响而出现故障。然而,目前对轨道电路故障的检测方法仍然依赖于现场人员的经验。为了提高故障诊断的效率和准确性,我们建议建立一个智能故障诊断系统。考虑到故障数据是一维时间序列,本文提出了一种基于 UNet-LSTM 网络(ULN)的故障诊断方法。根据故障数据建立 LSTM 网络,用于 ZPW-2000A 轨道电路故障诊断。然而,在轨道电路的常见故障诊断中,使用单一 LSTM 网络的错误率较高。因此,本文提出了一种基于 UNet 网络的特征提取方法。该方法用于提取原始数据的特征,然后将其输入 LSTM 网络进行故障诊断。通过对现场故障数据的实验,验证了该方法能对七种常见轨道电路故障进行准确分类。最后,通过与其他常用故障分类方法的比较,验证了该方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Track Circuits Fault Diagnosis Method Based on the UNet-LSTM Network (ULN)
As a commonly used mode of transportation in people’s daily lives, the normal operation of railway transportation is crucial. The track circuit, as a key component of the railway transportation system, is prone to malfunctions due to environmental factors. However, the current method of inspecting track circuit faults still relies on the experience of on-site personnel. In order to improve the efficiency and accuracy of fault diagnosis, we propose to establish an intelligent fault diagnosis system. Considering that the fault data are a one-dimensional time series, this paper presents a fault diagnosis method based on the UNet-LSTM network (ULN). The LSTM network is established on the basis of fault data and used for ZPW-2000A track circuit fault diagnosis. However, the use of a single LSTM network has a high error rate in the common fault diagnosis of track circuits. Therefore, this paper proposes a feature extraction method based on the UNet network. This method is used to extract the features of the original data and then input them into the LSTM network for fault diagnosis. Through experiments with on-site fault data, it has been verified that this method can accurately classify seven common track circuit faults. Finally, the superiority of the method is verified by comparing it with other commonly used fault classification methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Electrical and Computer Engineering
Journal of Electrical and Computer Engineering COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
4.20
自引率
0.00%
发文量
152
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信