Benjamin Poole, Alex Marsh, David Lunt, Chris Hardie, Mike Gorley, Cory Hamelin, Allan Harte
{"title":"热离子 LaB6 扫描电子显微镜中的高分辨率应变绘图","authors":"Benjamin Poole, Alex Marsh, David Lunt, Chris Hardie, Mike Gorley, Cory Hamelin, Allan Harte","doi":"10.1111/str.12472","DOIUrl":null,"url":null,"abstract":"The high source stability and brightness of field emission gun equipped scanning electron microscopes (SEM) makes them ideal for high‐resolution digital image correlation (HRDIC). However, their high initial capital cost can be prohibitive for research organisations and groups. Conventional thermionic SEMs using either a tungsten hairpin or LaB6 filament are far more widespread due to their lower cost. Whilst it is understood that overall performance and ultimate resolution are lower than field emission SEMs, we propose that there is no fundamental reason why these instruments are unsuitable for HRDIC. We investigate the use of a LaB6 SEM as a viable tool for HRDIC. We detail the subtleties of performing HRDIC using a LaB6 thermionic source SEM, providing technical recommendations for best practices in using these instruments for strain mapping. The effects of instrument parameters on strain measurement noise are examined, with a focus on parameters of key relevance to in situ and ex situ mechanical testing. Errors in focus and image pixel size are found to be the primary contributors to the strain noise floor values, with stage accuracy being of secondary importance. We present a case study in oxygen‐free high‐conductivity copper, OFHC‐Cu, which is used in the designs of nuclear fusion components as a heat sink interlayer. Heterogeneous strain patterns are observed in this material, with high levels of strain localisation at grain boundaries. Active slip systems are identified using the relative displacement ratio method, demonstrating the quality of these data and the suitability of LaB6 instruments for HRDIC strain mapping, achieving performance approaching that expected of a field emission SEM.","PeriodicalId":21972,"journal":{"name":"Strain","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High‐resolution strain mapping in a thermionic LaB6 scanning electron microscope\",\"authors\":\"Benjamin Poole, Alex Marsh, David Lunt, Chris Hardie, Mike Gorley, Cory Hamelin, Allan Harte\",\"doi\":\"10.1111/str.12472\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The high source stability and brightness of field emission gun equipped scanning electron microscopes (SEM) makes them ideal for high‐resolution digital image correlation (HRDIC). However, their high initial capital cost can be prohibitive for research organisations and groups. Conventional thermionic SEMs using either a tungsten hairpin or LaB6 filament are far more widespread due to their lower cost. Whilst it is understood that overall performance and ultimate resolution are lower than field emission SEMs, we propose that there is no fundamental reason why these instruments are unsuitable for HRDIC. We investigate the use of a LaB6 SEM as a viable tool for HRDIC. We detail the subtleties of performing HRDIC using a LaB6 thermionic source SEM, providing technical recommendations for best practices in using these instruments for strain mapping. The effects of instrument parameters on strain measurement noise are examined, with a focus on parameters of key relevance to in situ and ex situ mechanical testing. Errors in focus and image pixel size are found to be the primary contributors to the strain noise floor values, with stage accuracy being of secondary importance. We present a case study in oxygen‐free high‐conductivity copper, OFHC‐Cu, which is used in the designs of nuclear fusion components as a heat sink interlayer. Heterogeneous strain patterns are observed in this material, with high levels of strain localisation at grain boundaries. Active slip systems are identified using the relative displacement ratio method, demonstrating the quality of these data and the suitability of LaB6 instruments for HRDIC strain mapping, achieving performance approaching that expected of a field emission SEM.\",\"PeriodicalId\":21972,\"journal\":{\"name\":\"Strain\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Strain\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1111/str.12472\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strain","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1111/str.12472","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
High‐resolution strain mapping in a thermionic LaB6 scanning electron microscope
The high source stability and brightness of field emission gun equipped scanning electron microscopes (SEM) makes them ideal for high‐resolution digital image correlation (HRDIC). However, their high initial capital cost can be prohibitive for research organisations and groups. Conventional thermionic SEMs using either a tungsten hairpin or LaB6 filament are far more widespread due to their lower cost. Whilst it is understood that overall performance and ultimate resolution are lower than field emission SEMs, we propose that there is no fundamental reason why these instruments are unsuitable for HRDIC. We investigate the use of a LaB6 SEM as a viable tool for HRDIC. We detail the subtleties of performing HRDIC using a LaB6 thermionic source SEM, providing technical recommendations for best practices in using these instruments for strain mapping. The effects of instrument parameters on strain measurement noise are examined, with a focus on parameters of key relevance to in situ and ex situ mechanical testing. Errors in focus and image pixel size are found to be the primary contributors to the strain noise floor values, with stage accuracy being of secondary importance. We present a case study in oxygen‐free high‐conductivity copper, OFHC‐Cu, which is used in the designs of nuclear fusion components as a heat sink interlayer. Heterogeneous strain patterns are observed in this material, with high levels of strain localisation at grain boundaries. Active slip systems are identified using the relative displacement ratio method, demonstrating the quality of these data and the suitability of LaB6 instruments for HRDIC strain mapping, achieving performance approaching that expected of a field emission SEM.
期刊介绍:
Strain is an international journal that contains contributions from leading-edge research on the measurement of the mechanical behaviour of structures and systems. Strain only accepts contributions with sufficient novelty in the design, implementation, and/or validation of experimental methodologies to characterize materials, structures, and systems; i.e. contributions that are limited to the application of established methodologies are outside of the scope of the journal. The journal includes papers from all engineering disciplines that deal with material behaviour and degradation under load, structural design and measurement techniques. Although the thrust of the journal is experimental, numerical simulations and validation are included in the coverage.
Strain welcomes papers that deal with novel work in the following areas:
experimental techniques
non-destructive evaluation techniques
numerical analysis, simulation and validation
residual stress measurement techniques
design of composite structures and components
impact behaviour of materials and structures
signal and image processing
transducer and sensor design
structural health monitoring
biomechanics
extreme environment
micro- and nano-scale testing method.