{"title":"利用 InGaN 太阳能电池接收可见光通信","authors":"H. Manzoor, S. Manzoor, M. Jamshed, T. Manzoor","doi":"10.1049/ntw2.12115","DOIUrl":null,"url":null,"abstract":"Solar cells are increasingly being utilised for both energy harvesting and reception in free‐space optical (FSO) communication networks. The authors focus on the implementation of a mid‐band p‐In0.01Ga0.99 N/p‐In0.5Ga0.5 N/n‐In0.5Ga0.5 N (PPN) solar cell, boasting an impressive 26.36% conversion efficiency (under 1.5AM conditions) as a receiver within an indoor FSO communication network. Employing a solar cell with dimensions of 1 mm in length and width, the FSO system underwent simulation using Optisystm software, while the solar cell's behaviour was simulated using SCAPS‐1D. The received power from the solar cell was then compared to that of four commercially available avalanche photodiode (APD) receivers. Exploring incident wavelengths spanning 400–700 nm within the visible spectrum, across transmission distances of 5, 10, 15, and 20 m, the study presented current‐voltage (IV) and power‐voltage curves. Notably, the InGaN solar cell exhibited superior electrical power output compared to all commercial APDs. In conclusion, the findings underscore that augmenting received power has the potential to enhance FSO network quality and support extended transmission distances.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"125 2","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leveraging InGaN solar cells for visible light communication reception\",\"authors\":\"H. Manzoor, S. Manzoor, M. Jamshed, T. Manzoor\",\"doi\":\"10.1049/ntw2.12115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solar cells are increasingly being utilised for both energy harvesting and reception in free‐space optical (FSO) communication networks. The authors focus on the implementation of a mid‐band p‐In0.01Ga0.99 N/p‐In0.5Ga0.5 N/n‐In0.5Ga0.5 N (PPN) solar cell, boasting an impressive 26.36% conversion efficiency (under 1.5AM conditions) as a receiver within an indoor FSO communication network. Employing a solar cell with dimensions of 1 mm in length and width, the FSO system underwent simulation using Optisystm software, while the solar cell's behaviour was simulated using SCAPS‐1D. The received power from the solar cell was then compared to that of four commercially available avalanche photodiode (APD) receivers. Exploring incident wavelengths spanning 400–700 nm within the visible spectrum, across transmission distances of 5, 10, 15, and 20 m, the study presented current‐voltage (IV) and power‐voltage curves. Notably, the InGaN solar cell exhibited superior electrical power output compared to all commercial APDs. In conclusion, the findings underscore that augmenting received power has the potential to enhance FSO network quality and support extended transmission distances.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":\"125 2\",\"pages\":\"\"},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/ntw2.12115\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/ntw2.12115","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Leveraging InGaN solar cells for visible light communication reception
Solar cells are increasingly being utilised for both energy harvesting and reception in free‐space optical (FSO) communication networks. The authors focus on the implementation of a mid‐band p‐In0.01Ga0.99 N/p‐In0.5Ga0.5 N/n‐In0.5Ga0.5 N (PPN) solar cell, boasting an impressive 26.36% conversion efficiency (under 1.5AM conditions) as a receiver within an indoor FSO communication network. Employing a solar cell with dimensions of 1 mm in length and width, the FSO system underwent simulation using Optisystm software, while the solar cell's behaviour was simulated using SCAPS‐1D. The received power from the solar cell was then compared to that of four commercially available avalanche photodiode (APD) receivers. Exploring incident wavelengths spanning 400–700 nm within the visible spectrum, across transmission distances of 5, 10, 15, and 20 m, the study presented current‐voltage (IV) and power‐voltage curves. Notably, the InGaN solar cell exhibited superior electrical power output compared to all commercial APDs. In conclusion, the findings underscore that augmenting received power has the potential to enhance FSO network quality and support extended transmission distances.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.