{"title":"可解释的人工智能促进去碳化:贫困社区采用替代燃料汽车","authors":"A. Latif Patwary , Asad J. Khattak","doi":"10.1080/15568318.2024.2311813","DOIUrl":null,"url":null,"abstract":"<div><p>This article explores the adoption of alternative fuel vehicles (AFVs), leading to decarbonization, in disadvantaged communities (DACs) by applying statistical and explainable artificial intelligence (XAI) techniques to understand the factors associated with AFV adoption in these communities. The study harnesses a unique and comprehensive database of surveys and public databases for the Puget Sound region in the United States. The XAI techniques, specifically the Extreme Gradient Boosting algorithm with Shapely Additive Explanations, provide interpretable and understandable explanations of factors associated with AFV adoption in DACs. The study findings provide an understanding of the social and economic factors and challenges of DACs. The results suggest several key factors, especially a lack of access to charging infrastructure, consumer attitudes, and income, play a substantial role in adopting AFVs. As expected, AFV adoption in DACs (12.96%) is lower than non-DACs (15.30%). More public charging stations strongly correlate with AFV adoption in DACs. Tech-oriented households in DACs are more likely to adopt AFVs compared with non-DACs. The findings also point to the significant effects of home charging facilities while adopting AFVs in DACs. The XAI results emphasize the importance of socio-economic factors in AFV adoption programs and provide insights into decision-making in DACs. This research contributes to the literature on AFV adoption and suggests opportunities for improvements in DACs transitioning to AFVs. The study findings can be used to assess the planning-level impacts of refueling or charging infrastructure in DACs while enabling DACs to benefit from infrastructure investments.</p></div>","PeriodicalId":47824,"journal":{"name":"International Journal of Sustainable Transportation","volume":"18 5","pages":"Pages 393-407"},"PeriodicalIF":3.1000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Explainable artificial intelligence for decarbonization: Alternative fuel vehicle adoption in disadvantaged communities\",\"authors\":\"A. Latif Patwary , Asad J. Khattak\",\"doi\":\"10.1080/15568318.2024.2311813\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This article explores the adoption of alternative fuel vehicles (AFVs), leading to decarbonization, in disadvantaged communities (DACs) by applying statistical and explainable artificial intelligence (XAI) techniques to understand the factors associated with AFV adoption in these communities. The study harnesses a unique and comprehensive database of surveys and public databases for the Puget Sound region in the United States. The XAI techniques, specifically the Extreme Gradient Boosting algorithm with Shapely Additive Explanations, provide interpretable and understandable explanations of factors associated with AFV adoption in DACs. The study findings provide an understanding of the social and economic factors and challenges of DACs. The results suggest several key factors, especially a lack of access to charging infrastructure, consumer attitudes, and income, play a substantial role in adopting AFVs. As expected, AFV adoption in DACs (12.96%) is lower than non-DACs (15.30%). More public charging stations strongly correlate with AFV adoption in DACs. Tech-oriented households in DACs are more likely to adopt AFVs compared with non-DACs. The findings also point to the significant effects of home charging facilities while adopting AFVs in DACs. The XAI results emphasize the importance of socio-economic factors in AFV adoption programs and provide insights into decision-making in DACs. This research contributes to the literature on AFV adoption and suggests opportunities for improvements in DACs transitioning to AFVs. The study findings can be used to assess the planning-level impacts of refueling or charging infrastructure in DACs while enabling DACs to benefit from infrastructure investments.</p></div>\",\"PeriodicalId\":47824,\"journal\":{\"name\":\"International Journal of Sustainable Transportation\",\"volume\":\"18 5\",\"pages\":\"Pages 393-407\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Sustainable Transportation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1556831824000042\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL STUDIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Sustainable Transportation","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1556831824000042","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
Explainable artificial intelligence for decarbonization: Alternative fuel vehicle adoption in disadvantaged communities
This article explores the adoption of alternative fuel vehicles (AFVs), leading to decarbonization, in disadvantaged communities (DACs) by applying statistical and explainable artificial intelligence (XAI) techniques to understand the factors associated with AFV adoption in these communities. The study harnesses a unique and comprehensive database of surveys and public databases for the Puget Sound region in the United States. The XAI techniques, specifically the Extreme Gradient Boosting algorithm with Shapely Additive Explanations, provide interpretable and understandable explanations of factors associated with AFV adoption in DACs. The study findings provide an understanding of the social and economic factors and challenges of DACs. The results suggest several key factors, especially a lack of access to charging infrastructure, consumer attitudes, and income, play a substantial role in adopting AFVs. As expected, AFV adoption in DACs (12.96%) is lower than non-DACs (15.30%). More public charging stations strongly correlate with AFV adoption in DACs. Tech-oriented households in DACs are more likely to adopt AFVs compared with non-DACs. The findings also point to the significant effects of home charging facilities while adopting AFVs in DACs. The XAI results emphasize the importance of socio-economic factors in AFV adoption programs and provide insights into decision-making in DACs. This research contributes to the literature on AFV adoption and suggests opportunities for improvements in DACs transitioning to AFVs. The study findings can be used to assess the planning-level impacts of refueling or charging infrastructure in DACs while enabling DACs to benefit from infrastructure investments.
期刊介绍:
The International Journal of Sustainable Transportation provides a discussion forum for the exchange of new and innovative ideas on sustainable transportation research in the context of environmental, economical, social, and engineering aspects, as well as current and future interactions of transportation systems and other urban subsystems. The scope includes the examination of overall sustainability of any transportation system, including its infrastructure, vehicle, operation, and maintenance; the integration of social science disciplines, engineering, and information technology with transportation; the understanding of the comparative aspects of different transportation systems from a global perspective; qualitative and quantitative transportation studies; and case studies, surveys, and expository papers in an international or local context. Equal emphasis is placed on the problems of sustainable transportation that are associated with passenger and freight transportation modes in both industrialized and non-industrialized areas. All submitted manuscripts are subject to initial evaluation by the Editors and, if found suitable for further consideration, to peer review by independent, anonymous expert reviewers. All peer review is single-blind. Submissions are made online via ScholarOne Manuscripts.