Prasenjit Sharma, S. Purushothaman, Meenu Sachdeva, M. S. Srinivas, N. Venkaiah, J. Ramkumar, Mamilla Ravi Shankar
{"title":"镍钛诺激光微纹理的实验研究与建模","authors":"Prasenjit Sharma, S. Purushothaman, Meenu Sachdeva, M. S. Srinivas, N. Venkaiah, J. Ramkumar, Mamilla Ravi Shankar","doi":"10.1177/25165984231215886","DOIUrl":null,"url":null,"abstract":"The unique material properties of Nitinol have led to its extensive use in the biomedical field and microdevices. However, the machining of Nitinol remains a challenge due to its exceptional mechanical properties. This led to the use of a non-conventional machining process, of which laser machining proved to be most suitable and promising due to its versatility. To understand the process, the sample was irradiated by a laser beam over a straight line. An analytical model attempts to understand the process and predict the minimum process parameters necessary to conduct the machining process. The results are compared experimentally, wherein the influence of laser power and scan speed over the surface morphology, hardness, and groove dimensions are studied in detail. The optimum process signature was 90 W of laser fluence with a 100 mm/s scanning speed.","PeriodicalId":129806,"journal":{"name":"Journal of Micromanufacturing","volume":"23 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental study and modeling of laser micro texturing of Nitinol\",\"authors\":\"Prasenjit Sharma, S. Purushothaman, Meenu Sachdeva, M. S. Srinivas, N. Venkaiah, J. Ramkumar, Mamilla Ravi Shankar\",\"doi\":\"10.1177/25165984231215886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The unique material properties of Nitinol have led to its extensive use in the biomedical field and microdevices. However, the machining of Nitinol remains a challenge due to its exceptional mechanical properties. This led to the use of a non-conventional machining process, of which laser machining proved to be most suitable and promising due to its versatility. To understand the process, the sample was irradiated by a laser beam over a straight line. An analytical model attempts to understand the process and predict the minimum process parameters necessary to conduct the machining process. The results are compared experimentally, wherein the influence of laser power and scan speed over the surface morphology, hardness, and groove dimensions are studied in detail. The optimum process signature was 90 W of laser fluence with a 100 mm/s scanning speed.\",\"PeriodicalId\":129806,\"journal\":{\"name\":\"Journal of Micromanufacturing\",\"volume\":\"23 7\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Micromanufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/25165984231215886\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micromanufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/25165984231215886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
镍钛诺具有独特的材料特性,因此被广泛应用于生物医学领域和微型设备中。然而,由于镍钛诺具有特殊的机械性能,其加工仍然是一项挑战。这就需要使用非常规加工工艺,其中激光加工因其多功能性而被证明是最合适和最有前途的。为了了解加工过程,我们用激光束对样品进行直线照射。分析模型试图了解加工过程,并预测加工过程所需的最小加工参数。实验结果进行了比较,详细研究了激光功率和扫描速度对表面形态、硬度和沟槽尺寸的影响。最佳加工参数为 90 W 的激光能量和 100 mm/s 的扫描速度。
Experimental study and modeling of laser micro texturing of Nitinol
The unique material properties of Nitinol have led to its extensive use in the biomedical field and microdevices. However, the machining of Nitinol remains a challenge due to its exceptional mechanical properties. This led to the use of a non-conventional machining process, of which laser machining proved to be most suitable and promising due to its versatility. To understand the process, the sample was irradiated by a laser beam over a straight line. An analytical model attempts to understand the process and predict the minimum process parameters necessary to conduct the machining process. The results are compared experimentally, wherein the influence of laser power and scan speed over the surface morphology, hardness, and groove dimensions are studied in detail. The optimum process signature was 90 W of laser fluence with a 100 mm/s scanning speed.