基于大数据和机器学习的对话文本特征提取

Xueli Liu, Hua Zhang, Yue Cheng
{"title":"基于大数据和机器学习的对话文本特征提取","authors":"Xueli Liu, Hua Zhang, Yue Cheng","doi":"10.4018/ijwltt.337602","DOIUrl":null,"url":null,"abstract":"In this article, a dialogue text feature extraction model based on big data and machine learning is constructed, which transforms the high-dimensional space of text features into the low-dimensional space that is easy to process, so that the best feature words can be selected to represent the document set. Tests show that in most cases, the classification accuracy of this model is higher than 88%, and the recall rate is higher than 85%, thus achieving the goal of higher classification accuracy with less computation. When extracting the features of dialogue texts, there is no need for preprocessing, just count the data such as lexical composition, sentence length and sentence-to-sentence relationship of the target text, and make linear analysis to obtain key indicators and weights. Based on this, the classification model can achieve good results, thus effectively reducing the workload and computation of text classification.","PeriodicalId":506438,"journal":{"name":"International Journal of Web-Based Learning and Teaching Technologies","volume":"63 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feature Extraction of Dialogue Text Based on Big Data and Machine Learning\",\"authors\":\"Xueli Liu, Hua Zhang, Yue Cheng\",\"doi\":\"10.4018/ijwltt.337602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, a dialogue text feature extraction model based on big data and machine learning is constructed, which transforms the high-dimensional space of text features into the low-dimensional space that is easy to process, so that the best feature words can be selected to represent the document set. Tests show that in most cases, the classification accuracy of this model is higher than 88%, and the recall rate is higher than 85%, thus achieving the goal of higher classification accuracy with less computation. When extracting the features of dialogue texts, there is no need for preprocessing, just count the data such as lexical composition, sentence length and sentence-to-sentence relationship of the target text, and make linear analysis to obtain key indicators and weights. Based on this, the classification model can achieve good results, thus effectively reducing the workload and computation of text classification.\",\"PeriodicalId\":506438,\"journal\":{\"name\":\"International Journal of Web-Based Learning and Teaching Technologies\",\"volume\":\"63 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Web-Based Learning and Teaching Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijwltt.337602\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Web-Based Learning and Teaching Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijwltt.337602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文构建了一种基于大数据和机器学习的对话文本特征提取模型,将文本特征的高维空间转化为易于处理的低维空间,从而选取最佳特征词来表示文档集。测试表明,在大多数情况下,该模型的分类准确率高于 88%,召回率高于 85%,从而实现了以较少的计算量获得较高分类准确率的目标。在提取对话文本特征时,无需预处理,只需统计目标文本的词性构成、句子长度、句与句之间的关系等数据,并进行线性分析,得到关键指标和权重。在此基础上,分类模型可以取得良好的效果,从而有效减少文本分类的工作量和计算量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feature Extraction of Dialogue Text Based on Big Data and Machine Learning
In this article, a dialogue text feature extraction model based on big data and machine learning is constructed, which transforms the high-dimensional space of text features into the low-dimensional space that is easy to process, so that the best feature words can be selected to represent the document set. Tests show that in most cases, the classification accuracy of this model is higher than 88%, and the recall rate is higher than 85%, thus achieving the goal of higher classification accuracy with less computation. When extracting the features of dialogue texts, there is no need for preprocessing, just count the data such as lexical composition, sentence length and sentence-to-sentence relationship of the target text, and make linear analysis to obtain key indicators and weights. Based on this, the classification model can achieve good results, thus effectively reducing the workload and computation of text classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信