{"title":"在 6G 非地面网络场景中为车联网应用提供网络切片分布式学习即服务","authors":"David Naseh, S. Shinde, D. Tarchi","doi":"10.3390/jsan13010014","DOIUrl":null,"url":null,"abstract":"In the rapidly evolving landscape of next-generation 6G systems, the integration of AI functions to orchestrate network resources and meet stringent user requirements is a key focus. Distributed Learning (DL), a promising set of techniques that shape the future of 6G communication systems, plays a pivotal role. Vehicular applications, representing various services, are likely to benefit significantly from the advances of 6G technologies, enabling dynamic management infused with inherent intelligence. However, the deployment of various DL methods in traditional vehicular settings with specific demands and resource constraints poses challenges. The emergence of distributed computing and communication resources, such as the edge-cloud continuum and integrated terrestrial and non-terrestrial networks (T/NTN), provides a solution. Efficiently harnessing these resources and simultaneously implementing diverse DL methods becomes crucial, and Network Slicing (NS) emerges as a valuable tool. This study delves into the analysis of DL methods suitable for vehicular environments alongside NS. Subsequently, we present a framework to facilitate DL-as-a-Service (DLaaS) on a distributed networking platform, empowering the proactive deployment of DL algorithms. This approach allows for the effective management of heterogeneous services with varying requirements. The proposed framework is exemplified through a detailed case study in a vehicular integrated T/NTN with diverse service demands from specific regions. Performance analysis highlights the advantages of the DLaaS approach, focusing on flexibility, performance enhancement, added intelligence, and increased user satisfaction in the considered T/NTN vehicular scenario.","PeriodicalId":37584,"journal":{"name":"Journal of Sensor and Actuator Networks","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Network Sliced Distributed Learning-as-a-Service for Internet of Vehicles Applications in 6G Non-Terrestrial Network Scenarios\",\"authors\":\"David Naseh, S. Shinde, D. Tarchi\",\"doi\":\"10.3390/jsan13010014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the rapidly evolving landscape of next-generation 6G systems, the integration of AI functions to orchestrate network resources and meet stringent user requirements is a key focus. Distributed Learning (DL), a promising set of techniques that shape the future of 6G communication systems, plays a pivotal role. Vehicular applications, representing various services, are likely to benefit significantly from the advances of 6G technologies, enabling dynamic management infused with inherent intelligence. However, the deployment of various DL methods in traditional vehicular settings with specific demands and resource constraints poses challenges. The emergence of distributed computing and communication resources, such as the edge-cloud continuum and integrated terrestrial and non-terrestrial networks (T/NTN), provides a solution. Efficiently harnessing these resources and simultaneously implementing diverse DL methods becomes crucial, and Network Slicing (NS) emerges as a valuable tool. This study delves into the analysis of DL methods suitable for vehicular environments alongside NS. Subsequently, we present a framework to facilitate DL-as-a-Service (DLaaS) on a distributed networking platform, empowering the proactive deployment of DL algorithms. This approach allows for the effective management of heterogeneous services with varying requirements. The proposed framework is exemplified through a detailed case study in a vehicular integrated T/NTN with diverse service demands from specific regions. Performance analysis highlights the advantages of the DLaaS approach, focusing on flexibility, performance enhancement, added intelligence, and increased user satisfaction in the considered T/NTN vehicular scenario.\",\"PeriodicalId\":37584,\"journal\":{\"name\":\"Journal of Sensor and Actuator Networks\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sensor and Actuator Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jsan13010014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sensor and Actuator Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jsan13010014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Network Sliced Distributed Learning-as-a-Service for Internet of Vehicles Applications in 6G Non-Terrestrial Network Scenarios
In the rapidly evolving landscape of next-generation 6G systems, the integration of AI functions to orchestrate network resources and meet stringent user requirements is a key focus. Distributed Learning (DL), a promising set of techniques that shape the future of 6G communication systems, plays a pivotal role. Vehicular applications, representing various services, are likely to benefit significantly from the advances of 6G technologies, enabling dynamic management infused with inherent intelligence. However, the deployment of various DL methods in traditional vehicular settings with specific demands and resource constraints poses challenges. The emergence of distributed computing and communication resources, such as the edge-cloud continuum and integrated terrestrial and non-terrestrial networks (T/NTN), provides a solution. Efficiently harnessing these resources and simultaneously implementing diverse DL methods becomes crucial, and Network Slicing (NS) emerges as a valuable tool. This study delves into the analysis of DL methods suitable for vehicular environments alongside NS. Subsequently, we present a framework to facilitate DL-as-a-Service (DLaaS) on a distributed networking platform, empowering the proactive deployment of DL algorithms. This approach allows for the effective management of heterogeneous services with varying requirements. The proposed framework is exemplified through a detailed case study in a vehicular integrated T/NTN with diverse service demands from specific regions. Performance analysis highlights the advantages of the DLaaS approach, focusing on flexibility, performance enhancement, added intelligence, and increased user satisfaction in the considered T/NTN vehicular scenario.
期刊介绍:
Journal of Sensor and Actuator Networks (ISSN 2224-2708) is an international open access journal on the science and technology of sensor and actuator networks. It publishes regular research papers, reviews (including comprehensive reviews on complete sensor and actuator networks), and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.