从作为任务的图表到作为工具的图表

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
A. L. Stephens
{"title":"从作为任务的图表到作为工具的图表","authors":"A. L. Stephens","doi":"10.1002/tea.21930","DOIUrl":null,"url":null,"abstract":"It is widely recognized that we need to prepare students to think with data. This study investigates student interactions with digital data graphs and seeks to identify what might prompt them to shift toward using their graphs as thinking tools in the authentic activity of doing science. Drawing from video screencast data of three small groups engaged in sensor‐based and computer simulation‐based experiments in high school physics classes, exploratory qualitative methods are used to identify the student interactions with their graphs and what appeared to prompt shifts in those interactions. Analysis of the groups, one from a 9th grade class and two from 11th/12th grade combined classes, revealed that unexpected data patterns and graphical anomalies sometimes, but not always, preceded deeper engagement with the graphs. When shifts toward deeper engagement did occur, transcripts revealed that the students perceived the graphical patterns to be misaligned with the actions they had taken to produce those data. Misalignments between the physical, digital, and conceptual worlds of the investigations played an important role in these episodes, appearing to motivate students to revise either their experimental procedures or their conceptions of the phenomena being explored. If real‐time graphs can help foster a sense in students that there should be alignments between their data production and data representations, it is suggested that pedagogy leverage this as a way to support deeper student engagement with graphs.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"185 2","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From graphs as task to graphs as tool\",\"authors\":\"A. L. Stephens\",\"doi\":\"10.1002/tea.21930\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is widely recognized that we need to prepare students to think with data. This study investigates student interactions with digital data graphs and seeks to identify what might prompt them to shift toward using their graphs as thinking tools in the authentic activity of doing science. Drawing from video screencast data of three small groups engaged in sensor‐based and computer simulation‐based experiments in high school physics classes, exploratory qualitative methods are used to identify the student interactions with their graphs and what appeared to prompt shifts in those interactions. Analysis of the groups, one from a 9th grade class and two from 11th/12th grade combined classes, revealed that unexpected data patterns and graphical anomalies sometimes, but not always, preceded deeper engagement with the graphs. When shifts toward deeper engagement did occur, transcripts revealed that the students perceived the graphical patterns to be misaligned with the actions they had taken to produce those data. Misalignments between the physical, digital, and conceptual worlds of the investigations played an important role in these episodes, appearing to motivate students to revise either their experimental procedures or their conceptions of the phenomena being explored. If real‐time graphs can help foster a sense in students that there should be alignments between their data production and data representations, it is suggested that pedagogy leverage this as a way to support deeper student engagement with graphs.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":\"185 2\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://doi.org/10.1002/tea.21930\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1002/tea.21930","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

人们普遍认为,我们需要培养学生用数据进行思考。本研究调查了学生与数字数据图表之间的互动情况,并试图找出可能促使他们在科学实践的真实活动中将图表作为思考工具的因素。本研究利用三个小组在高中物理课堂上进行基于传感器和计算机模拟实验的视频截屏数据,采用探索性的定性方法来确定学生与他们的图表之间的互动,以及促使这些互动发生转变的因素。对一个九年级班级和两个十一年级/十二年级联合班级的小组进行的分析表明,意外的数据模式和图形异常有时会(但并非总是)先于对图形的深入参与。当学生开始深入参与时,成绩单显示,学生认为图形模式与他们产生这些数据所采取的行动不一致。在这些事件中,探究的物理世界、数字世界和概念世界之间的错位发挥了重要作用,似乎促使学生修改他们的实验程序或他们对所探究现象的概念。如果实时图表有助于培养学生的一种意识,即他们的数据生产和数据表示之间应该是一致的,那么建议教学法利用这一点来支持学生更深入地参与到图表中来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
From graphs as task to graphs as tool
It is widely recognized that we need to prepare students to think with data. This study investigates student interactions with digital data graphs and seeks to identify what might prompt them to shift toward using their graphs as thinking tools in the authentic activity of doing science. Drawing from video screencast data of three small groups engaged in sensor‐based and computer simulation‐based experiments in high school physics classes, exploratory qualitative methods are used to identify the student interactions with their graphs and what appeared to prompt shifts in those interactions. Analysis of the groups, one from a 9th grade class and two from 11th/12th grade combined classes, revealed that unexpected data patterns and graphical anomalies sometimes, but not always, preceded deeper engagement with the graphs. When shifts toward deeper engagement did occur, transcripts revealed that the students perceived the graphical patterns to be misaligned with the actions they had taken to produce those data. Misalignments between the physical, digital, and conceptual worlds of the investigations played an important role in these episodes, appearing to motivate students to revise either their experimental procedures or their conceptions of the phenomena being explored. If real‐time graphs can help foster a sense in students that there should be alignments between their data production and data representations, it is suggested that pedagogy leverage this as a way to support deeper student engagement with graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊介绍: ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric. Indexed/​Abstracted: Web of Science SCIE Scopus CAS INSPEC Portico
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信