Javier Sanguino Otero, Carmen Rodríguez-Jiménez, Jose Mostaza Prieto, Carlos Rodríguez-Antolín, Ana Carazo Alvarez, Francisco Arrieta Blanco, Sonia Rodríguez-Nóvoa
{"title":"家族性高胆固醇血症患者 LDLR 和 PCSK9 基因 3′UTR 变异的功能分析","authors":"Javier Sanguino Otero, Carmen Rodríguez-Jiménez, Jose Mostaza Prieto, Carlos Rodríguez-Antolín, Ana Carazo Alvarez, Francisco Arrieta Blanco, Sonia Rodríguez-Nóvoa","doi":"10.1155/2024/9964734","DOIUrl":null,"url":null,"abstract":"<p>Familial hypercholesterolemia (FH) is an autosomal dominant disease with an estimated prevalence of 1 in 200-250 individuals. Patients with FH are at increased risk of premature coronary artery disease. Early diagnosis and treatment are essential for improving clinical outcomes. In many cases, however, the genetic diagnosis is not confirmed. At present, routine genetic testing does not analyze the 3<sup>′</sup>UTR regions of <i>LDLR</i> and <i>PCSK9</i>. However, 3<sup>′</sup>UTR-single nucleotide variants could be of interest because they can modify the target sequence of miRNAs that regulate the expression of these genes. Our study fully characterizes the 3<sup>′</sup>UTR regions of <i>LDLR</i> and <i>PCSK9</i> in 409 patients with a suspected diagnosis of FH using next-generation sequencing. In 30 of the 409 patients, we found 21 variants with an allelic frequency of <1%; 14 of them at 3<sup>′</sup>UTR-<i>LDLR</i> and 8 at 3<sup>′</sup>UTR-<i>PCSK9</i>. The variants’ pathogenicity was studied <i>in silico</i>; subsequently, a number of the variants were functionally validated using luciferase reporter assays. <i>LDLR</i>:c.<sup>∗</sup>653G > C showed a 41% decrease in luciferase expression, while <i>PCSK9</i>:c.<sup>∗</sup>950C > T showed a 41% increase in PCSK9 expression, results that could explain the hypercholesterolemia phenotype. In summary, the genetic analysis of the 3<sup>′</sup>UTR regions of <i>LDLR</i> and <i>PCSK9</i> could improve the genetic diagnosis of FH.</p>","PeriodicalId":13061,"journal":{"name":"Human Mutation","volume":"2024 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functional Analysis of 3′UTR Variants at the LDLR and PCSK9 Genes in Patients with Familial Hypercholesterolemia\",\"authors\":\"Javier Sanguino Otero, Carmen Rodríguez-Jiménez, Jose Mostaza Prieto, Carlos Rodríguez-Antolín, Ana Carazo Alvarez, Francisco Arrieta Blanco, Sonia Rodríguez-Nóvoa\",\"doi\":\"10.1155/2024/9964734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Familial hypercholesterolemia (FH) is an autosomal dominant disease with an estimated prevalence of 1 in 200-250 individuals. Patients with FH are at increased risk of premature coronary artery disease. Early diagnosis and treatment are essential for improving clinical outcomes. In many cases, however, the genetic diagnosis is not confirmed. At present, routine genetic testing does not analyze the 3<sup>′</sup>UTR regions of <i>LDLR</i> and <i>PCSK9</i>. However, 3<sup>′</sup>UTR-single nucleotide variants could be of interest because they can modify the target sequence of miRNAs that regulate the expression of these genes. Our study fully characterizes the 3<sup>′</sup>UTR regions of <i>LDLR</i> and <i>PCSK9</i> in 409 patients with a suspected diagnosis of FH using next-generation sequencing. In 30 of the 409 patients, we found 21 variants with an allelic frequency of <1%; 14 of them at 3<sup>′</sup>UTR-<i>LDLR</i> and 8 at 3<sup>′</sup>UTR-<i>PCSK9</i>. The variants’ pathogenicity was studied <i>in silico</i>; subsequently, a number of the variants were functionally validated using luciferase reporter assays. <i>LDLR</i>:c.<sup>∗</sup>653G > C showed a 41% decrease in luciferase expression, while <i>PCSK9</i>:c.<sup>∗</sup>950C > T showed a 41% increase in PCSK9 expression, results that could explain the hypercholesterolemia phenotype. In summary, the genetic analysis of the 3<sup>′</sup>UTR regions of <i>LDLR</i> and <i>PCSK9</i> could improve the genetic diagnosis of FH.</p>\",\"PeriodicalId\":13061,\"journal\":{\"name\":\"Human Mutation\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Mutation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/9964734\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Mutation","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/9964734","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Functional Analysis of 3′UTR Variants at the LDLR and PCSK9 Genes in Patients with Familial Hypercholesterolemia
Familial hypercholesterolemia (FH) is an autosomal dominant disease with an estimated prevalence of 1 in 200-250 individuals. Patients with FH are at increased risk of premature coronary artery disease. Early diagnosis and treatment are essential for improving clinical outcomes. In many cases, however, the genetic diagnosis is not confirmed. At present, routine genetic testing does not analyze the 3′UTR regions of LDLR and PCSK9. However, 3′UTR-single nucleotide variants could be of interest because they can modify the target sequence of miRNAs that regulate the expression of these genes. Our study fully characterizes the 3′UTR regions of LDLR and PCSK9 in 409 patients with a suspected diagnosis of FH using next-generation sequencing. In 30 of the 409 patients, we found 21 variants with an allelic frequency of <1%; 14 of them at 3′UTR-LDLR and 8 at 3′UTR-PCSK9. The variants’ pathogenicity was studied in silico; subsequently, a number of the variants were functionally validated using luciferase reporter assays. LDLR:c.∗653G > C showed a 41% decrease in luciferase expression, while PCSK9:c.∗950C > T showed a 41% increase in PCSK9 expression, results that could explain the hypercholesterolemia phenotype. In summary, the genetic analysis of the 3′UTR regions of LDLR and PCSK9 could improve the genetic diagnosis of FH.
期刊介绍:
Human Mutation is a peer-reviewed journal that offers publication of original Research Articles, Methods, Mutation Updates, Reviews, Database Articles, Rapid Communications, and Letters on broad aspects of mutation research in humans. Reports of novel DNA variations and their phenotypic consequences, reports of SNPs demonstrated as valuable for genomic analysis, descriptions of new molecular detection methods, and novel approaches to clinical diagnosis are welcomed. Novel reports of gene organization at the genomic level, reported in the context of mutation investigation, may be considered. The journal provides a unique forum for the exchange of ideas, methods, and applications of interest to molecular, human, and medical geneticists in academic, industrial, and clinical research settings worldwide.