利用人工智能开发心脏移植受者感染 COVID-19 的风险预测模型

Shriya Sharma, Nora Menon, Jose Ruiz, Caitlyn Luce, Lisa Brumble, Anirban Bhattacharya, Rohan Goswami
{"title":"利用人工智能开发心脏移植受者感染 COVID-19 的风险预测模型","authors":"Shriya Sharma, Nora Menon, Jose Ruiz, Caitlyn Luce, Lisa Brumble, Anirban Bhattacharya, Rohan Goswami","doi":"10.2217/fvl-2023-0162","DOIUrl":null,"url":null,"abstract":"Aim: Describe the utility of an inverse reinforcement learning pathway to develop a novel model to predict and manage the spread of COVID-19. Materials & methods: Convolutional neural network (CNN) with multilayer perceptron (MLP) modeling functions utilized inverse reinforcement learning to predict COVID-19 outcomes based on a comprehensive array of factors. Results: Our model demonstrates a sensitivity of 0.67 in the receiver operating characteristic curve and can correctly identify approximately 67% of the positive cases. Conclusion: We demonstrate the ability to augment clinical decision-making with a novel artificial intelligence (AI) solution that accurately predicted the susceptibility of transplant patients to COVID-19. This enables physicians to administer treatment and take appropriate preventative measures based on patients' risk factors.","PeriodicalId":503758,"journal":{"name":"Future Virology","volume":" 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Developing a risk prediction model for COVID-19 infection in heart transplant recipients using artificial intelligence\",\"authors\":\"Shriya Sharma, Nora Menon, Jose Ruiz, Caitlyn Luce, Lisa Brumble, Anirban Bhattacharya, Rohan Goswami\",\"doi\":\"10.2217/fvl-2023-0162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aim: Describe the utility of an inverse reinforcement learning pathway to develop a novel model to predict and manage the spread of COVID-19. Materials & methods: Convolutional neural network (CNN) with multilayer perceptron (MLP) modeling functions utilized inverse reinforcement learning to predict COVID-19 outcomes based on a comprehensive array of factors. Results: Our model demonstrates a sensitivity of 0.67 in the receiver operating characteristic curve and can correctly identify approximately 67% of the positive cases. Conclusion: We demonstrate the ability to augment clinical decision-making with a novel artificial intelligence (AI) solution that accurately predicted the susceptibility of transplant patients to COVID-19. This enables physicians to administer treatment and take appropriate preventative measures based on patients' risk factors.\",\"PeriodicalId\":503758,\"journal\":{\"name\":\"Future Virology\",\"volume\":\" 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Virology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2217/fvl-2023-0162\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Virology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2217/fvl-2023-0162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的:描述反强化学习途径在开发新型模型以预测和管理 COVID-19 传播方面的实用性。材料与方法:具有多层感知器(MLP)建模功能的卷积神经网络(CNN)利用反强化学习来预测基于一系列综合因素的 COVID-19 结果。结果我们的模型在接收者操作特征曲线上的灵敏度为 0.67,能正确识别约 67% 的阳性病例。结论我们展示了利用新型人工智能 (AI) 解决方案增强临床决策的能力,该解决方案可准确预测移植患者对 COVID-19 的易感性。这使医生能够根据患者的风险因素进行治疗并采取适当的预防措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Developing a risk prediction model for COVID-19 infection in heart transplant recipients using artificial intelligence
Aim: Describe the utility of an inverse reinforcement learning pathway to develop a novel model to predict and manage the spread of COVID-19. Materials & methods: Convolutional neural network (CNN) with multilayer perceptron (MLP) modeling functions utilized inverse reinforcement learning to predict COVID-19 outcomes based on a comprehensive array of factors. Results: Our model demonstrates a sensitivity of 0.67 in the receiver operating characteristic curve and can correctly identify approximately 67% of the positive cases. Conclusion: We demonstrate the ability to augment clinical decision-making with a novel artificial intelligence (AI) solution that accurately predicted the susceptibility of transplant patients to COVID-19. This enables physicians to administer treatment and take appropriate preventative measures based on patients' risk factors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信