{"title":"一个(光子)、二维(晶体)、大量(潜力):快速发展领域的快照","authors":"Salvatore Cianci, E. Blundo, Marco Felici","doi":"10.1088/2399-1984/ad285b","DOIUrl":null,"url":null,"abstract":"\n We present a concise overview of the state of affairs in the development of single-photon sources based on two-dimensional (2D) crystals, focusing in particular on transition-metal dichalcogenides and hexagonal boron nitride. We briefly discuss the current level of advancement (i) in our understanding of the microscopic origin of the quantum emitters (QEs) identified in these two material systems, and (ii) in the characterization of the optical properties of these emitters; then, we survey the main methods developed to enable the dynamic control of the QEs' emission energy. Finally, we summarize the main results stemming from the coupling of QEs embedded in 2D materials with photonic and plasmonic structures.","PeriodicalId":54222,"journal":{"name":"Nano Futures","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"One (photon), two(-dimensional crystals), a lot (of potential): a quick snapshot of a rapidly evolving field\",\"authors\":\"Salvatore Cianci, E. Blundo, Marco Felici\",\"doi\":\"10.1088/2399-1984/ad285b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We present a concise overview of the state of affairs in the development of single-photon sources based on two-dimensional (2D) crystals, focusing in particular on transition-metal dichalcogenides and hexagonal boron nitride. We briefly discuss the current level of advancement (i) in our understanding of the microscopic origin of the quantum emitters (QEs) identified in these two material systems, and (ii) in the characterization of the optical properties of these emitters; then, we survey the main methods developed to enable the dynamic control of the QEs' emission energy. Finally, we summarize the main results stemming from the coupling of QEs embedded in 2D materials with photonic and plasmonic structures.\",\"PeriodicalId\":54222,\"journal\":{\"name\":\"Nano Futures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Futures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/2399-1984/ad285b\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Futures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/2399-1984/ad285b","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
我们简要概述了基于二维(2D)晶体的单光子源的发展现状,尤其侧重于过渡金属二卤化物和六方氮化硼。我们简要讨论了目前在以下方面的进展:(i) 我们对这两种材料系统中量子发射器(QEs)微观起源的理解;(ii) 这些发射器光学特性的表征;然后,我们考察了为实现对 QEs 发射能量的动态控制而开发的主要方法。最后,我们总结了嵌入二维材料的 QE 与光子和等离子结构耦合的主要成果。
One (photon), two(-dimensional crystals), a lot (of potential): a quick snapshot of a rapidly evolving field
We present a concise overview of the state of affairs in the development of single-photon sources based on two-dimensional (2D) crystals, focusing in particular on transition-metal dichalcogenides and hexagonal boron nitride. We briefly discuss the current level of advancement (i) in our understanding of the microscopic origin of the quantum emitters (QEs) identified in these two material systems, and (ii) in the characterization of the optical properties of these emitters; then, we survey the main methods developed to enable the dynamic control of the QEs' emission energy. Finally, we summarize the main results stemming from the coupling of QEs embedded in 2D materials with photonic and plasmonic structures.
期刊介绍:
Nano Futures mission is to reflect the diverse and multidisciplinary field of nanoscience and nanotechnology that now brings together researchers from across physics, chemistry, biomedicine, materials science, engineering and industry.