用于储能设备的先进无机纳米材料的合成与表征

Pohandoy Spozhmay Osmani
{"title":"用于储能设备的先进无机纳米材料的合成与表征","authors":"Pohandoy Spozhmay Osmani","doi":"10.55544/jrasb.3.1.20","DOIUrl":null,"url":null,"abstract":"In the pursuit of enhancing energy storage technologies, the synthesis and characterization of advanced inorganic nanomaterials have emerged as a focal point. This paper delineates a comprehensive investigation into the tailored synthesis and meticulous characterization of inorganic nanomaterials tailored for energy storage applications. Leveraging a suite of sophisticated synthesis techniques including sol-gel, hydrothermal, and chemical vapor deposition, nanomaterials with precisely controlled size, morphology, and composition were fabricated. Subsequent characterization employing state-of-the-art techniques such as X-ray diffraction, scanning electron microscopy, and transmission electron microscopy unveiled intricate insights into the structural, morphological, and chemical attributes of the synthesized nanomaterials. Through meticulous analysis and interpretation of experimental results, this study illuminates the profound influence of nanomaterial properties on the performance of energy storage devices, offering a nuanced understanding essential for advancing energy storage technologies. The synthesized nanomaterials exhibit promising potential for a spectrum of applications including lithium-ion batteries and supercapacitors, underscoring their pivotal role in the ongoing evolution of energy storage solutions","PeriodicalId":507877,"journal":{"name":"Journal for Research in Applied Sciences and Biotechnology","volume":"21 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and Characterization of Advanced Inorganic Nanomaterials for Energy Storage Devices\",\"authors\":\"Pohandoy Spozhmay Osmani\",\"doi\":\"10.55544/jrasb.3.1.20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the pursuit of enhancing energy storage technologies, the synthesis and characterization of advanced inorganic nanomaterials have emerged as a focal point. This paper delineates a comprehensive investigation into the tailored synthesis and meticulous characterization of inorganic nanomaterials tailored for energy storage applications. Leveraging a suite of sophisticated synthesis techniques including sol-gel, hydrothermal, and chemical vapor deposition, nanomaterials with precisely controlled size, morphology, and composition were fabricated. Subsequent characterization employing state-of-the-art techniques such as X-ray diffraction, scanning electron microscopy, and transmission electron microscopy unveiled intricate insights into the structural, morphological, and chemical attributes of the synthesized nanomaterials. Through meticulous analysis and interpretation of experimental results, this study illuminates the profound influence of nanomaterial properties on the performance of energy storage devices, offering a nuanced understanding essential for advancing energy storage technologies. The synthesized nanomaterials exhibit promising potential for a spectrum of applications including lithium-ion batteries and supercapacitors, underscoring their pivotal role in the ongoing evolution of energy storage solutions\",\"PeriodicalId\":507877,\"journal\":{\"name\":\"Journal for Research in Applied Sciences and Biotechnology\",\"volume\":\"21 9\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal for Research in Applied Sciences and Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55544/jrasb.3.1.20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal for Research in Applied Sciences and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55544/jrasb.3.1.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在追求提高储能技术的过程中,先进无机纳米材料的合成和表征已成为一个焦点。本文全面研究了针对储能应用的无机纳米材料的定制合成和精细表征。利用溶胶-凝胶、水热和化学气相沉积等一系列复杂的合成技术,制备出了尺寸、形态和成分均可精确控制的纳米材料。随后采用 X 射线衍射、扫描电子显微镜和透射电子显微镜等最先进的技术进行表征,揭示了合成纳米材料的结构、形态和化学属性。通过对实验结果的细致分析和解释,本研究揭示了纳米材料特性对储能设备性能的深远影响,为推进储能技术的发展提供了至关重要的细微认识。合成的纳米材料在包括锂离子电池和超级电容器在内的一系列应用中展现出了巨大的潜力,突显了它们在能源存储解决方案的不断发展中的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthesis and Characterization of Advanced Inorganic Nanomaterials for Energy Storage Devices
In the pursuit of enhancing energy storage technologies, the synthesis and characterization of advanced inorganic nanomaterials have emerged as a focal point. This paper delineates a comprehensive investigation into the tailored synthesis and meticulous characterization of inorganic nanomaterials tailored for energy storage applications. Leveraging a suite of sophisticated synthesis techniques including sol-gel, hydrothermal, and chemical vapor deposition, nanomaterials with precisely controlled size, morphology, and composition were fabricated. Subsequent characterization employing state-of-the-art techniques such as X-ray diffraction, scanning electron microscopy, and transmission electron microscopy unveiled intricate insights into the structural, morphological, and chemical attributes of the synthesized nanomaterials. Through meticulous analysis and interpretation of experimental results, this study illuminates the profound influence of nanomaterial properties on the performance of energy storage devices, offering a nuanced understanding essential for advancing energy storage technologies. The synthesized nanomaterials exhibit promising potential for a spectrum of applications including lithium-ion batteries and supercapacitors, underscoring their pivotal role in the ongoing evolution of energy storage solutions
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信