黑质髓质中铁的增加可识别早期帕金森病患者:3T 和 7T 磁共振成像研究

IF 3.4 2区 医学 Q2 NEUROIMAGING
Erind Alushaj , Nicholas Handfield-Jones , Alan Kuurstra , Anisa Morava , Ravi S. Menon , Adrian M. Owen , Manas Sharma , Ali R. Khan , Penny A. MacDonald
{"title":"黑质髓质中铁的增加可识别早期帕金森病患者:3T 和 7T 磁共振成像研究","authors":"Erind Alushaj ,&nbsp;Nicholas Handfield-Jones ,&nbsp;Alan Kuurstra ,&nbsp;Anisa Morava ,&nbsp;Ravi S. Menon ,&nbsp;Adrian M. Owen ,&nbsp;Manas Sharma ,&nbsp;Ali R. Khan ,&nbsp;Penny A. MacDonald","doi":"10.1016/j.nicl.2024.103577","DOIUrl":null,"url":null,"abstract":"<div><p>Degeneration in the substantia nigra (SN) pars compacta (SNc) underlies motor symptoms in Parkinson’s disease (PD). Currently, there are no neuroimaging biomarkers that are sufficiently sensitive, specific, reproducible, and accessible for routine diagnosis or staging of PD. Although iron is essential for cellular processes, it also mediates neurodegeneration. MRI can localize and quantify brain iron using magnetic susceptibility, which could potentially provide biomarkers of PD.</p><p>We measured iron in the SNc, SN pars reticulata (SNr), total SN, and ventral tegmental area (VTA), using quantitative susceptibility mapping (QSM) and R2* relaxometry, in PD patients and age-matched healthy controls (HCs). PD patients, diagnosed within five years of participation and HCs were scanned at 3T (22 PD and 23 HCs) and 7T (17 PD and 21 HCs) MRI. Midbrain nuclei were segmented using a probabilistic subcortical atlas. QSM and R2* values were measured in midbrain subregions. For each measure, groups were contrasted, with Age and Sex as covariates, and receiver operating characteristic (ROC) curve analyses were performed with repeated <em>k</em>-fold cross-validation to test the potential of our measures to classify PD patients and HCs. Statistical differences of area under the curves (AUCs) were compared using the Hanley-MacNeil method (QSM versus R2*; 3T versus 7T MRI).</p><p>PD patients had higher QSM values in the SNc at both 3T (<em>p<sub>adj</sub></em> = 0.001) and 7T (<em>p<sub>adj</sub></em> = 0.01), but not in SNr, total SN, or VTA, at either field strength. No significant group differences were revealed using R2* in any midbrain region at 3T, though increased R2* values in SNc at 7T MRI were marginally significant in PDs compared to HCs (<em>p<sub>adj</sub></em> = 0.052). ROC curve analyses showed that SNc iron measured with QSM, distinguished early PD patients from HCs at the single-subject level with good diagnostic accuracy, using 3T (mean AUC = 0.83, 95 % CI = 0.82–0.84) and 7T (mean AUC = 0.80, 95 % CI = 0.79–0.81) MRI. Mean AUCs reported here are from averages of tests in the hold-out fold of cross-validated samples. The Hanley-MacNeil method demonstrated that QSM outperforms R2* in discriminating PD patients from HCs at 3T, but not 7T. There were no significant differences between 3T and 7T in diagnostic accuracy of QSM values in SNc.</p><p>This study highlights the importance of segmenting midbrain subregions, performed here using a standardized atlas, and demonstrates high accuracy of SNc iron measured with QSM at 3T MRI in identifying early PD patients. QSM measures of SNc show potential for inclusion in neuroimaging diagnostic biomarkers of early PD. An MRI diagnostic biomarker of PD would represent a significant clinical advance.</p></div>","PeriodicalId":54359,"journal":{"name":"Neuroimage-Clinical","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2213158224000160/pdfft?md5=fa42bc5194c8e4a22bf56577a4a9cf7e&pid=1-s2.0-S2213158224000160-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Increased iron in the substantia nigra pars compacta identifies patients with early Parkinson’s disease: A 3T and 7T MRI study\",\"authors\":\"Erind Alushaj ,&nbsp;Nicholas Handfield-Jones ,&nbsp;Alan Kuurstra ,&nbsp;Anisa Morava ,&nbsp;Ravi S. Menon ,&nbsp;Adrian M. Owen ,&nbsp;Manas Sharma ,&nbsp;Ali R. Khan ,&nbsp;Penny A. MacDonald\",\"doi\":\"10.1016/j.nicl.2024.103577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Degeneration in the substantia nigra (SN) pars compacta (SNc) underlies motor symptoms in Parkinson’s disease (PD). Currently, there are no neuroimaging biomarkers that are sufficiently sensitive, specific, reproducible, and accessible for routine diagnosis or staging of PD. Although iron is essential for cellular processes, it also mediates neurodegeneration. MRI can localize and quantify brain iron using magnetic susceptibility, which could potentially provide biomarkers of PD.</p><p>We measured iron in the SNc, SN pars reticulata (SNr), total SN, and ventral tegmental area (VTA), using quantitative susceptibility mapping (QSM) and R2* relaxometry, in PD patients and age-matched healthy controls (HCs). PD patients, diagnosed within five years of participation and HCs were scanned at 3T (22 PD and 23 HCs) and 7T (17 PD and 21 HCs) MRI. Midbrain nuclei were segmented using a probabilistic subcortical atlas. QSM and R2* values were measured in midbrain subregions. For each measure, groups were contrasted, with Age and Sex as covariates, and receiver operating characteristic (ROC) curve analyses were performed with repeated <em>k</em>-fold cross-validation to test the potential of our measures to classify PD patients and HCs. Statistical differences of area under the curves (AUCs) were compared using the Hanley-MacNeil method (QSM versus R2*; 3T versus 7T MRI).</p><p>PD patients had higher QSM values in the SNc at both 3T (<em>p<sub>adj</sub></em> = 0.001) and 7T (<em>p<sub>adj</sub></em> = 0.01), but not in SNr, total SN, or VTA, at either field strength. No significant group differences were revealed using R2* in any midbrain region at 3T, though increased R2* values in SNc at 7T MRI were marginally significant in PDs compared to HCs (<em>p<sub>adj</sub></em> = 0.052). ROC curve analyses showed that SNc iron measured with QSM, distinguished early PD patients from HCs at the single-subject level with good diagnostic accuracy, using 3T (mean AUC = 0.83, 95 % CI = 0.82–0.84) and 7T (mean AUC = 0.80, 95 % CI = 0.79–0.81) MRI. Mean AUCs reported here are from averages of tests in the hold-out fold of cross-validated samples. The Hanley-MacNeil method demonstrated that QSM outperforms R2* in discriminating PD patients from HCs at 3T, but not 7T. There were no significant differences between 3T and 7T in diagnostic accuracy of QSM values in SNc.</p><p>This study highlights the importance of segmenting midbrain subregions, performed here using a standardized atlas, and demonstrates high accuracy of SNc iron measured with QSM at 3T MRI in identifying early PD patients. QSM measures of SNc show potential for inclusion in neuroimaging diagnostic biomarkers of early PD. An MRI diagnostic biomarker of PD would represent a significant clinical advance.</p></div>\",\"PeriodicalId\":54359,\"journal\":{\"name\":\"Neuroimage-Clinical\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2213158224000160/pdfft?md5=fa42bc5194c8e4a22bf56577a4a9cf7e&pid=1-s2.0-S2213158224000160-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroimage-Clinical\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213158224000160\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROIMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroimage-Clinical","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213158224000160","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0

摘要

黑质(SN)紧凑部(SNc)的退化是帕金森病(PD)运动症状的基础。目前,还没有足够敏感、特异、可重复性强且可用于帕金森病常规诊断或分期的神经影像生物标志物。虽然铁对细胞过程至关重要,但它也会介导神经变性。我们使用定量磁感应强度图谱(QSM)和R2*弛豫测量法测量了帕金森病患者和年龄匹配的健康对照组(HCs)的SNc、SN网状旁(SNr)、整个SN和腹侧被盖区(VTA)的铁含量。对五年内确诊的帕金森病患者和健康对照组分别进行了 3T (22 名帕金森病患者和 23 名健康对照组)和 7T (17 名帕金森病患者和 21 名健康对照组)磁共振成像扫描。使用概率皮层下图谱对中脑核进行分割。在中脑亚区测量 QSM 和 R2* 值。以年龄和性别作为协变量,对每种测量指标进行分组对比,并通过重复 k 倍交叉验证进行接收器操作特征(ROC)曲线分析,以检验我们的测量指标对 PD 患者和 HCs 进行分类的潜力。采用 Hanley-MacNeil 方法比较了曲线下面积 (AUC) 的统计差异(QSM 与 R2*;3T 与 7T MRI)。在 3T (padj = 0.001) 和 7T (padj = 0.01) 磁场强度下,PD 患者在 SNc 中的 QSM 值较高,但在 SNr、总 SN 或 VTA 中的 QSM 值较低。在 3T 磁共振成像中,任何中脑区域的 R2* 均未显示出明显的组间差异,但在 7T 磁共振成像中,与 HCs 相比,PDs SNc 的 R2* 值略有增加(padj = 0.052)。ROC 曲线分析表明,在单个受试者水平上,使用 QSM 测量的 SNc 铁在 3T (平均 AUC = 0.83,95 % CI = 0.82-0.84)和 7T (平均 AUC = 0.80,95 % CI = 0.79-0.81)MRI 下可将早期 PD 患者与 HC 区分开来,诊断准确性很高。此处报告的平均 AUC 值来自交叉验证样本的保留折叠测试的平均值。Hanley-MacNeil 方法表明,在 3T 下,QSM 的效果优于 R2*,但在 7T 下,QSM 的效果不如 R2*。这项研究强调了使用标准化图谱分割中脑亚区的重要性,并证明在 3T MRI 下使用 QSM 测量的 SNc 铁在鉴别早期帕金森病患者方面具有很高的准确性。QSM测量的SNc显示了纳入早期帕金森病神经影像诊断生物标志物的潜力。脑退化症的磁共振成像诊断生物标志物将是一项重大的临床进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Increased iron in the substantia nigra pars compacta identifies patients with early Parkinson’s disease: A 3T and 7T MRI study

Degeneration in the substantia nigra (SN) pars compacta (SNc) underlies motor symptoms in Parkinson’s disease (PD). Currently, there are no neuroimaging biomarkers that are sufficiently sensitive, specific, reproducible, and accessible for routine diagnosis or staging of PD. Although iron is essential for cellular processes, it also mediates neurodegeneration. MRI can localize and quantify brain iron using magnetic susceptibility, which could potentially provide biomarkers of PD.

We measured iron in the SNc, SN pars reticulata (SNr), total SN, and ventral tegmental area (VTA), using quantitative susceptibility mapping (QSM) and R2* relaxometry, in PD patients and age-matched healthy controls (HCs). PD patients, diagnosed within five years of participation and HCs were scanned at 3T (22 PD and 23 HCs) and 7T (17 PD and 21 HCs) MRI. Midbrain nuclei were segmented using a probabilistic subcortical atlas. QSM and R2* values were measured in midbrain subregions. For each measure, groups were contrasted, with Age and Sex as covariates, and receiver operating characteristic (ROC) curve analyses were performed with repeated k-fold cross-validation to test the potential of our measures to classify PD patients and HCs. Statistical differences of area under the curves (AUCs) were compared using the Hanley-MacNeil method (QSM versus R2*; 3T versus 7T MRI).

PD patients had higher QSM values in the SNc at both 3T (padj = 0.001) and 7T (padj = 0.01), but not in SNr, total SN, or VTA, at either field strength. No significant group differences were revealed using R2* in any midbrain region at 3T, though increased R2* values in SNc at 7T MRI were marginally significant in PDs compared to HCs (padj = 0.052). ROC curve analyses showed that SNc iron measured with QSM, distinguished early PD patients from HCs at the single-subject level with good diagnostic accuracy, using 3T (mean AUC = 0.83, 95 % CI = 0.82–0.84) and 7T (mean AUC = 0.80, 95 % CI = 0.79–0.81) MRI. Mean AUCs reported here are from averages of tests in the hold-out fold of cross-validated samples. The Hanley-MacNeil method demonstrated that QSM outperforms R2* in discriminating PD patients from HCs at 3T, but not 7T. There were no significant differences between 3T and 7T in diagnostic accuracy of QSM values in SNc.

This study highlights the importance of segmenting midbrain subregions, performed here using a standardized atlas, and demonstrates high accuracy of SNc iron measured with QSM at 3T MRI in identifying early PD patients. QSM measures of SNc show potential for inclusion in neuroimaging diagnostic biomarkers of early PD. An MRI diagnostic biomarker of PD would represent a significant clinical advance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neuroimage-Clinical
Neuroimage-Clinical NEUROIMAGING-
CiteScore
7.50
自引率
4.80%
发文量
368
审稿时长
52 days
期刊介绍: NeuroImage: Clinical, a journal of diseases, disorders and syndromes involving the Nervous System, provides a vehicle for communicating important advances in the study of abnormal structure-function relationships of the human nervous system based on imaging. The focus of NeuroImage: Clinical is on defining changes to the brain associated with primary neurologic and psychiatric diseases and disorders of the nervous system as well as behavioral syndromes and developmental conditions. The main criterion for judging papers is the extent of scientific advancement in the understanding of the pathophysiologic mechanisms of diseases and disorders, in identification of functional models that link clinical signs and symptoms with brain function and in the creation of image based tools applicable to a broad range of clinical needs including diagnosis, monitoring and tracking of illness, predicting therapeutic response and development of new treatments. Papers dealing with structure and function in animal models will also be considered if they reveal mechanisms that can be readily translated to human conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信