{"title":"热电池中辐照铀-6 wt% Zr 电提炼产生的燃料、盐和沉积物的放射化学和化学特性分析","authors":"Dwarapudi Bola Sankar, Rajeswari Seshadri, Kalaiyarasu Thirunavukkarasu, Gurudas Pakhui, Jakkula Siva Brahmaji Rao, Suranjan Bera, Balija Sreenivasulu, Kumaresan Radhakrishnan, Periasamy Manoravi, Venkataraman Jayaraman","doi":"10.1515/ract-2023-0203","DOIUrl":null,"url":null,"abstract":"Metal fuels are considered as the promising candidates for future fast breeder reactors. Pyro-chemical reprocessing is the ideal method for reprocessing spent metallic fuels due to the inherent process advantages. Electrorefining run was demonstrated in a hot cell facility with irradiated U-6 wt% Zr alloy at 500 °C using LiCl–KCl eutectic melt. In order to understand the behavior of the actinides and various fission products during high-temperature electrolysis, various process streams, viz., irradiated metal alloy fuel, the eutectic salt, and the cathode deposit were analyzed for the uranium, plutonium, and other fission product contents. Various methods employed for characterizing the process streams and the behaviors of some of the fission products during the electrolysis process are highlighted. The major gamma emitting radionuclides present in the irradiated fuel were <jats:sup>106</jats:sup>Ru, <jats:sup>125</jats:sup>Sb, <jats:sup>134</jats:sup>Cs, <jats:sup>137</jats:sup>Cs, <jats:sup>144</jats:sup>Ce, and <jats:sup>154</jats:sup>Eu. During electrorefining, cesium, cerium and europium were oxidized and dissolved in the molten media, whereas ruthenium and antimony remained in the anode basket. A minor contamination of zirconium was found in the cathode deposit.","PeriodicalId":21167,"journal":{"name":"Radiochimica Acta","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Radiochemical and chemical characterization of fuel, salt, and deposit from the electrorefining of irradiated U-6 wt% Zr in hot cells\",\"authors\":\"Dwarapudi Bola Sankar, Rajeswari Seshadri, Kalaiyarasu Thirunavukkarasu, Gurudas Pakhui, Jakkula Siva Brahmaji Rao, Suranjan Bera, Balija Sreenivasulu, Kumaresan Radhakrishnan, Periasamy Manoravi, Venkataraman Jayaraman\",\"doi\":\"10.1515/ract-2023-0203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metal fuels are considered as the promising candidates for future fast breeder reactors. Pyro-chemical reprocessing is the ideal method for reprocessing spent metallic fuels due to the inherent process advantages. Electrorefining run was demonstrated in a hot cell facility with irradiated U-6 wt% Zr alloy at 500 °C using LiCl–KCl eutectic melt. In order to understand the behavior of the actinides and various fission products during high-temperature electrolysis, various process streams, viz., irradiated metal alloy fuel, the eutectic salt, and the cathode deposit were analyzed for the uranium, plutonium, and other fission product contents. Various methods employed for characterizing the process streams and the behaviors of some of the fission products during the electrolysis process are highlighted. The major gamma emitting radionuclides present in the irradiated fuel were <jats:sup>106</jats:sup>Ru, <jats:sup>125</jats:sup>Sb, <jats:sup>134</jats:sup>Cs, <jats:sup>137</jats:sup>Cs, <jats:sup>144</jats:sup>Ce, and <jats:sup>154</jats:sup>Eu. During electrorefining, cesium, cerium and europium were oxidized and dissolved in the molten media, whereas ruthenium and antimony remained in the anode basket. A minor contamination of zirconium was found in the cathode deposit.\",\"PeriodicalId\":21167,\"journal\":{\"name\":\"Radiochimica Acta\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiochimica Acta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1515/ract-2023-0203\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiochimica Acta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/ract-2023-0203","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Radiochemical and chemical characterization of fuel, salt, and deposit from the electrorefining of irradiated U-6 wt% Zr in hot cells
Metal fuels are considered as the promising candidates for future fast breeder reactors. Pyro-chemical reprocessing is the ideal method for reprocessing spent metallic fuels due to the inherent process advantages. Electrorefining run was demonstrated in a hot cell facility with irradiated U-6 wt% Zr alloy at 500 °C using LiCl–KCl eutectic melt. In order to understand the behavior of the actinides and various fission products during high-temperature electrolysis, various process streams, viz., irradiated metal alloy fuel, the eutectic salt, and the cathode deposit were analyzed for the uranium, plutonium, and other fission product contents. Various methods employed for characterizing the process streams and the behaviors of some of the fission products during the electrolysis process are highlighted. The major gamma emitting radionuclides present in the irradiated fuel were 106Ru, 125Sb, 134Cs, 137Cs, 144Ce, and 154Eu. During electrorefining, cesium, cerium and europium were oxidized and dissolved in the molten media, whereas ruthenium and antimony remained in the anode basket. A minor contamination of zirconium was found in the cathode deposit.