K. Yu. Arefiev, A. M. Saveliev, A. V. Voronetskii, S. V. Kruchkov
{"title":"使用正癸烷中的导热金属纳米颗粒悬浮液的再生冷却系统研究","authors":"K. Yu. Arefiev, A. M. Saveliev, A. V. Voronetskii, S. V. Kruchkov","doi":"10.1134/S0869864323050104","DOIUrl":null,"url":null,"abstract":"<div><p>The paper presents the calculation estimates for efficiency of regenerative cooling for a model cylinder-shaped flow duct using a suspension of heat-conductive metal nanoparticles in n-decane as fuel/coolant. We adapted a standard mathematical model of conjugated heat transfer that accounts for thermophysical properties of the metal nanoparticle suspension and n-decane. The data are presented for heating up the nanosuspension and the model duct walls for the cases of different content of metal nanoparticles in nanosuspension. There exists a range beneficial for heat transfer from n-decane.</p></div>","PeriodicalId":800,"journal":{"name":"Thermophysics and Aeromechanics","volume":"30 5","pages":"925 - 934"},"PeriodicalIF":0.5000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of a regenerative cooling system while using heat-conductive metal nanoparticle suspension in n-decane\",\"authors\":\"K. Yu. Arefiev, A. M. Saveliev, A. V. Voronetskii, S. V. Kruchkov\",\"doi\":\"10.1134/S0869864323050104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The paper presents the calculation estimates for efficiency of regenerative cooling for a model cylinder-shaped flow duct using a suspension of heat-conductive metal nanoparticles in n-decane as fuel/coolant. We adapted a standard mathematical model of conjugated heat transfer that accounts for thermophysical properties of the metal nanoparticle suspension and n-decane. The data are presented for heating up the nanosuspension and the model duct walls for the cases of different content of metal nanoparticles in nanosuspension. There exists a range beneficial for heat transfer from n-decane.</p></div>\",\"PeriodicalId\":800,\"journal\":{\"name\":\"Thermophysics and Aeromechanics\",\"volume\":\"30 5\",\"pages\":\"925 - 934\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thermophysics and Aeromechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0869864323050104\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermophysics and Aeromechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0869864323050104","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Study of a regenerative cooling system while using heat-conductive metal nanoparticle suspension in n-decane
The paper presents the calculation estimates for efficiency of regenerative cooling for a model cylinder-shaped flow duct using a suspension of heat-conductive metal nanoparticles in n-decane as fuel/coolant. We adapted a standard mathematical model of conjugated heat transfer that accounts for thermophysical properties of the metal nanoparticle suspension and n-decane. The data are presented for heating up the nanosuspension and the model duct walls for the cases of different content of metal nanoparticles in nanosuspension. There exists a range beneficial for heat transfer from n-decane.
期刊介绍:
The journal Thermophysics and Aeromechanics publishes original reports, reviews, and discussions on the following topics: hydrogasdynamics, heat and mass transfer, turbulence, means and methods of aero- and thermophysical experiment, physics of low-temperature plasma, and physical and technical problems of energetics. These topics are the prior fields of investigation at the Institute of Thermophysics and the Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Russian Academy of Sciences (SB RAS), which are the founders of the journal along with SB RAS. This publication promotes an exchange of information between the researchers of Russia and the international scientific community.