正则代数尖顶自动表征的局部-全局相容性,当

IF 1.2 2区 数学 Q1 MATHEMATICS
Ila Varma
{"title":"正则代数尖顶自动表征的局部-全局相容性,当","authors":"Ila Varma","doi":"10.1017/fms.2024.7","DOIUrl":null,"url":null,"abstract":"We prove the compatibility of local and global Langlands correspondences for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000070_inline2.png\" /> <jats:tex-math> $\\operatorname {GL}_n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> up to semisimplification for the Galois representations constructed by Harris-Lan-Taylor-Thorne [10] and Scholze [18]. More precisely, let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000070_inline3.png\" /> <jats:tex-math> $r_p(\\pi )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> denote an <jats:italic>n</jats:italic>-dimensional <jats:italic>p</jats:italic>-adic representation of the Galois group of a CM field <jats:italic>F</jats:italic> attached to a regular algebraic cuspidal automorphic representation <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000070_inline4.png\" /> <jats:tex-math> $\\pi $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000070_inline5.png\" /> <jats:tex-math> $\\operatorname {GL}_n(\\mathbb {A}_F)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We show that the restriction of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000070_inline6.png\" /> <jats:tex-math> $r_p(\\pi )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> to the decomposition group of a place <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000070_inline7.png\" /> <jats:tex-math> $v\\nmid p$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of <jats:italic>F</jats:italic> corresponds up to semisimplification to <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000070_inline8.png\" /> <jats:tex-math> $\\operatorname {rec}(\\pi _v)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, the image of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000070_inline9.png\" /> <jats:tex-math> $\\pi _v$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> under the local Langlands correspondence. Furthermore, we can show that the monodromy of the associated Weil-Deligne representation of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000070_inline10.png\" /> <jats:tex-math> $\\left .r_p(\\pi )\\right |{}_{\\operatorname {Gal}_{F_v}}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is ‘more nilpotent’ than the monodromy of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000070_inline11.png\" /> <jats:tex-math> $\\operatorname {rec}(\\pi _v)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local-global compatibility for regular algebraic cuspidal automorphic representations when\",\"authors\":\"Ila Varma\",\"doi\":\"10.1017/fms.2024.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove the compatibility of local and global Langlands correspondences for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000070_inline2.png\\\" /> <jats:tex-math> $\\\\operatorname {GL}_n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> up to semisimplification for the Galois representations constructed by Harris-Lan-Taylor-Thorne [10] and Scholze [18]. More precisely, let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000070_inline3.png\\\" /> <jats:tex-math> $r_p(\\\\pi )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> denote an <jats:italic>n</jats:italic>-dimensional <jats:italic>p</jats:italic>-adic representation of the Galois group of a CM field <jats:italic>F</jats:italic> attached to a regular algebraic cuspidal automorphic representation <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000070_inline4.png\\\" /> <jats:tex-math> $\\\\pi $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000070_inline5.png\\\" /> <jats:tex-math> $\\\\operatorname {GL}_n(\\\\mathbb {A}_F)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We show that the restriction of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000070_inline6.png\\\" /> <jats:tex-math> $r_p(\\\\pi )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> to the decomposition group of a place <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000070_inline7.png\\\" /> <jats:tex-math> $v\\\\nmid p$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of <jats:italic>F</jats:italic> corresponds up to semisimplification to <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000070_inline8.png\\\" /> <jats:tex-math> $\\\\operatorname {rec}(\\\\pi _v)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, the image of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000070_inline9.png\\\" /> <jats:tex-math> $\\\\pi _v$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> under the local Langlands correspondence. Furthermore, we can show that the monodromy of the associated Weil-Deligne representation of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000070_inline10.png\\\" /> <jats:tex-math> $\\\\left .r_p(\\\\pi )\\\\right |{}_{\\\\operatorname {Gal}_{F_v}}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is ‘more nilpotent’ than the monodromy of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000070_inline11.png\\\" /> <jats:tex-math> $\\\\operatorname {rec}(\\\\pi _v)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.\",\"PeriodicalId\":56000,\"journal\":{\"name\":\"Forum of Mathematics Sigma\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum of Mathematics Sigma\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/fms.2024.7\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Sigma","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fms.2024.7","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了由 Harris-Lan-Taylor-Thorne [10] 和 Scholze [18] 构建的伽罗瓦表示的 $\operatorname {GL}_n$ 的局部和全局朗兰兹对应关系在半简化之前的兼容性。更确切地说,让 $r_p(\pi )$ 表示 CM 场 F 的伽罗瓦群的 n 维 p-adic 表示,它连接到 $\operatorname {GL}_n(\mathbb {A}_F)$ 的正则代数尖顶自形表示 $\pi $ 上。我们证明 $r_p(\pi )$ 对 F 的一个位置 $v\nmid p$ 的分解群的限制在半简化之前对应于 $\operatorname {rec}(\pi _v)$ ,即本地朗兰兹对应下 $\pi _v$ 的像。此外,我们可以证明$\left .r_p(\pi )\right |{}_{operatorname{Gal}_{F_v}}$的相关Weil-Deligne表示的单旋转比$\operatorname {rec}(\pi _v)$的单旋转 "更无势"。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Local-global compatibility for regular algebraic cuspidal automorphic representations when
We prove the compatibility of local and global Langlands correspondences for $\operatorname {GL}_n$ up to semisimplification for the Galois representations constructed by Harris-Lan-Taylor-Thorne [10] and Scholze [18]. More precisely, let $r_p(\pi )$ denote an n-dimensional p-adic representation of the Galois group of a CM field F attached to a regular algebraic cuspidal automorphic representation $\pi $ of $\operatorname {GL}_n(\mathbb {A}_F)$ . We show that the restriction of $r_p(\pi )$ to the decomposition group of a place $v\nmid p$ of F corresponds up to semisimplification to $\operatorname {rec}(\pi _v)$ , the image of $\pi _v$ under the local Langlands correspondence. Furthermore, we can show that the monodromy of the associated Weil-Deligne representation of $\left .r_p(\pi )\right |{}_{\operatorname {Gal}_{F_v}}$ is ‘more nilpotent’ than the monodromy of $\operatorname {rec}(\pi _v)$ .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forum of Mathematics Sigma
Forum of Mathematics Sigma Mathematics-Statistics and Probability
CiteScore
1.90
自引率
5.90%
发文量
79
审稿时长
40 weeks
期刊介绍: Forum of Mathematics, Sigma is the open access alternative to the leading specialist mathematics journals. Editorial decisions are made by dedicated clusters of editors concentrated in the following areas: foundations of mathematics, discrete mathematics, algebra, number theory, algebraic and complex geometry, differential geometry and geometric analysis, topology, analysis, probability, differential equations, computational mathematics, applied analysis, mathematical physics, and theoretical computer science. This classification exists to aid the peer review process. Contributions which do not neatly fit within these categories are still welcome. Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas will be welcomed. All published papers will be free online to readers in perpetuity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信