{"title":"正则代数尖顶自动表征的局部-全局相容性,当","authors":"Ila Varma","doi":"10.1017/fms.2024.7","DOIUrl":null,"url":null,"abstract":"We prove the compatibility of local and global Langlands correspondences for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000070_inline2.png\" /> <jats:tex-math> $\\operatorname {GL}_n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> up to semisimplification for the Galois representations constructed by Harris-Lan-Taylor-Thorne [10] and Scholze [18]. More precisely, let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000070_inline3.png\" /> <jats:tex-math> $r_p(\\pi )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> denote an <jats:italic>n</jats:italic>-dimensional <jats:italic>p</jats:italic>-adic representation of the Galois group of a CM field <jats:italic>F</jats:italic> attached to a regular algebraic cuspidal automorphic representation <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000070_inline4.png\" /> <jats:tex-math> $\\pi $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000070_inline5.png\" /> <jats:tex-math> $\\operatorname {GL}_n(\\mathbb {A}_F)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We show that the restriction of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000070_inline6.png\" /> <jats:tex-math> $r_p(\\pi )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> to the decomposition group of a place <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000070_inline7.png\" /> <jats:tex-math> $v\\nmid p$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of <jats:italic>F</jats:italic> corresponds up to semisimplification to <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000070_inline8.png\" /> <jats:tex-math> $\\operatorname {rec}(\\pi _v)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, the image of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000070_inline9.png\" /> <jats:tex-math> $\\pi _v$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> under the local Langlands correspondence. Furthermore, we can show that the monodromy of the associated Weil-Deligne representation of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000070_inline10.png\" /> <jats:tex-math> $\\left .r_p(\\pi )\\right |{}_{\\operatorname {Gal}_{F_v}}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is ‘more nilpotent’ than the monodromy of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000070_inline11.png\" /> <jats:tex-math> $\\operatorname {rec}(\\pi _v)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local-global compatibility for regular algebraic cuspidal automorphic representations when\",\"authors\":\"Ila Varma\",\"doi\":\"10.1017/fms.2024.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove the compatibility of local and global Langlands correspondences for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000070_inline2.png\\\" /> <jats:tex-math> $\\\\operatorname {GL}_n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> up to semisimplification for the Galois representations constructed by Harris-Lan-Taylor-Thorne [10] and Scholze [18]. More precisely, let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000070_inline3.png\\\" /> <jats:tex-math> $r_p(\\\\pi )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> denote an <jats:italic>n</jats:italic>-dimensional <jats:italic>p</jats:italic>-adic representation of the Galois group of a CM field <jats:italic>F</jats:italic> attached to a regular algebraic cuspidal automorphic representation <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000070_inline4.png\\\" /> <jats:tex-math> $\\\\pi $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000070_inline5.png\\\" /> <jats:tex-math> $\\\\operatorname {GL}_n(\\\\mathbb {A}_F)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We show that the restriction of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000070_inline6.png\\\" /> <jats:tex-math> $r_p(\\\\pi )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> to the decomposition group of a place <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000070_inline7.png\\\" /> <jats:tex-math> $v\\\\nmid p$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of <jats:italic>F</jats:italic> corresponds up to semisimplification to <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000070_inline8.png\\\" /> <jats:tex-math> $\\\\operatorname {rec}(\\\\pi _v)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, the image of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000070_inline9.png\\\" /> <jats:tex-math> $\\\\pi _v$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> under the local Langlands correspondence. Furthermore, we can show that the monodromy of the associated Weil-Deligne representation of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000070_inline10.png\\\" /> <jats:tex-math> $\\\\left .r_p(\\\\pi )\\\\right |{}_{\\\\operatorname {Gal}_{F_v}}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is ‘more nilpotent’ than the monodromy of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000070_inline11.png\\\" /> <jats:tex-math> $\\\\operatorname {rec}(\\\\pi _v)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.\",\"PeriodicalId\":56000,\"journal\":{\"name\":\"Forum of Mathematics Sigma\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum of Mathematics Sigma\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/fms.2024.7\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Sigma","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fms.2024.7","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Local-global compatibility for regular algebraic cuspidal automorphic representations when
We prove the compatibility of local and global Langlands correspondences for $\operatorname {GL}_n$ up to semisimplification for the Galois representations constructed by Harris-Lan-Taylor-Thorne [10] and Scholze [18]. More precisely, let $r_p(\pi )$ denote an n-dimensional p-adic representation of the Galois group of a CM field F attached to a regular algebraic cuspidal automorphic representation $\pi $ of $\operatorname {GL}_n(\mathbb {A}_F)$ . We show that the restriction of $r_p(\pi )$ to the decomposition group of a place $v\nmid p$ of F corresponds up to semisimplification to $\operatorname {rec}(\pi _v)$ , the image of $\pi _v$ under the local Langlands correspondence. Furthermore, we can show that the monodromy of the associated Weil-Deligne representation of $\left .r_p(\pi )\right |{}_{\operatorname {Gal}_{F_v}}$ is ‘more nilpotent’ than the monodromy of $\operatorname {rec}(\pi _v)$ .
期刊介绍:
Forum of Mathematics, Sigma is the open access alternative to the leading specialist mathematics journals. Editorial decisions are made by dedicated clusters of editors concentrated in the following areas: foundations of mathematics, discrete mathematics, algebra, number theory, algebraic and complex geometry, differential geometry and geometric analysis, topology, analysis, probability, differential equations, computational mathematics, applied analysis, mathematical physics, and theoretical computer science. This classification exists to aid the peer review process. Contributions which do not neatly fit within these categories are still welcome.
Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas will be welcomed. All published papers will be free online to readers in perpetuity.