移位对偶稳定格罗内狄克多项式的组合公式

IF 1.2 2区 数学 Q1 MATHEMATICS
Joel Lewis, Eric Marberg
{"title":"移位对偶稳定格罗内狄克多项式的组合公式","authors":"Joel Lewis, Eric Marberg","doi":"10.1017/fms.2024.8","DOIUrl":null,"url":null,"abstract":"The <jats:italic>K</jats:italic>-theoretic Schur <jats:italic>P</jats:italic>- and <jats:italic>Q</jats:italic>-functions <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000082_inline1.png\" /> <jats:tex-math> $G\\hspace {-0.2mm}P_\\lambda $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000082_inline2.png\" /> <jats:tex-math> $G\\hspace {-0.2mm}Q_\\lambda $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> may be concretely defined as weight-generating functions for semistandard shifted set-valued tableaux. These symmetric functions are the shifted analogues of stable Grothendieck polynomials and were introduced by Ikeda and Naruse for applications in geometry. Nakagawa and Naruse specified families of dual <jats:italic>K</jats:italic>-theoretic Schur <jats:italic>P</jats:italic>- and <jats:italic>Q</jats:italic>-functions <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000082_inline3.png\" /> <jats:tex-math> $g\\hspace {-0.1mm}p_\\lambda $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000082_inline4.png\" /> <jats:tex-math> $g\\hspace {-0.1mm}q_\\lambda $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> via a Cauchy identity involving <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000082_inline5.png\" /> <jats:tex-math> $G\\hspace {-0.2mm}P_\\lambda $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000082_inline6.png\" /> <jats:tex-math> $G\\hspace {-0.2mm}Q_\\lambda $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. They conjectured that the dual power series are weight-generating functions for certain shifted plane partitions. We prove this conjecture. We also derive a related generating function formula for the images of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000082_inline7.png\" /> <jats:tex-math> $g\\hspace {-0.1mm}p_\\lambda $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000082_inline8.png\" /> <jats:tex-math> $g\\hspace {-0.1mm}q_\\lambda $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> under the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000082_inline9.png\" /> <jats:tex-math> $\\omega $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> involution of the ring of symmetric functions. This confirms a conjecture of Chiu and the second author. Using these results, we verify a conjecture of Ikeda and Naruse that the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000082_inline10.png\" /> <jats:tex-math> $G\\hspace {-0.2mm}Q$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-functions are a basis for a ring.","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combinatorial formulas for shifted dual stable Grothendieck polynomials\",\"authors\":\"Joel Lewis, Eric Marberg\",\"doi\":\"10.1017/fms.2024.8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The <jats:italic>K</jats:italic>-theoretic Schur <jats:italic>P</jats:italic>- and <jats:italic>Q</jats:italic>-functions <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000082_inline1.png\\\" /> <jats:tex-math> $G\\\\hspace {-0.2mm}P_\\\\lambda $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000082_inline2.png\\\" /> <jats:tex-math> $G\\\\hspace {-0.2mm}Q_\\\\lambda $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> may be concretely defined as weight-generating functions for semistandard shifted set-valued tableaux. These symmetric functions are the shifted analogues of stable Grothendieck polynomials and were introduced by Ikeda and Naruse for applications in geometry. Nakagawa and Naruse specified families of dual <jats:italic>K</jats:italic>-theoretic Schur <jats:italic>P</jats:italic>- and <jats:italic>Q</jats:italic>-functions <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000082_inline3.png\\\" /> <jats:tex-math> $g\\\\hspace {-0.1mm}p_\\\\lambda $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000082_inline4.png\\\" /> <jats:tex-math> $g\\\\hspace {-0.1mm}q_\\\\lambda $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> via a Cauchy identity involving <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000082_inline5.png\\\" /> <jats:tex-math> $G\\\\hspace {-0.2mm}P_\\\\lambda $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000082_inline6.png\\\" /> <jats:tex-math> $G\\\\hspace {-0.2mm}Q_\\\\lambda $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. They conjectured that the dual power series are weight-generating functions for certain shifted plane partitions. We prove this conjecture. We also derive a related generating function formula for the images of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000082_inline7.png\\\" /> <jats:tex-math> $g\\\\hspace {-0.1mm}p_\\\\lambda $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000082_inline8.png\\\" /> <jats:tex-math> $g\\\\hspace {-0.1mm}q_\\\\lambda $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> under the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000082_inline9.png\\\" /> <jats:tex-math> $\\\\omega $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> involution of the ring of symmetric functions. This confirms a conjecture of Chiu and the second author. Using these results, we verify a conjecture of Ikeda and Naruse that the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000082_inline10.png\\\" /> <jats:tex-math> $G\\\\hspace {-0.2mm}Q$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-functions are a basis for a ring.\",\"PeriodicalId\":56000,\"journal\":{\"name\":\"Forum of Mathematics Sigma\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum of Mathematics Sigma\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/fms.2024.8\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Sigma","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fms.2024.8","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

K 理论舒尔 P- 和 Q 函数 $G\hspace {-0.2mm}P_\lambda $ 和 $G\hspace {-0.2mm}Q_\lambda $ 可以具体定义为半标准移位集值表的权重生成函数。这些对称函数是稳定的格罗内狄克多项式的移位类似物,由池田(Ikeda)和成濑(Naruse)引入并应用于几何中。中川(Nakagawa)和成濑(Naruse)通过涉及 $G\hspace {-0.2mm}P_\lambda $ 和 $G\hspace {-0.2mm}Q_\lambda $ 的考奇同一性指定了对偶 K 理论舒尔 P 函数和 Q 函数的系列。他们猜想对偶幂级数是某些移位平面分区的权生函数。我们证明了这一猜想。我们还推导了对称函数环的 $\omega $ 卷积下 $g\hspace {-0.1mm}p_\lambda $ 和 $g\hspace {-0.1mm}q_\lambda $ 的图像的相关生成函数公式。这证实了Chiu和第二作者的猜想。利用这些结果,我们验证了池田(Ikeda)和成濑(Naruse)的猜想,即 $G\hspace {-0.2mm}Q$ - 函数是一个环的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combinatorial formulas for shifted dual stable Grothendieck polynomials
The K-theoretic Schur P- and Q-functions $G\hspace {-0.2mm}P_\lambda $ and $G\hspace {-0.2mm}Q_\lambda $ may be concretely defined as weight-generating functions for semistandard shifted set-valued tableaux. These symmetric functions are the shifted analogues of stable Grothendieck polynomials and were introduced by Ikeda and Naruse for applications in geometry. Nakagawa and Naruse specified families of dual K-theoretic Schur P- and Q-functions $g\hspace {-0.1mm}p_\lambda $ and $g\hspace {-0.1mm}q_\lambda $ via a Cauchy identity involving $G\hspace {-0.2mm}P_\lambda $ and $G\hspace {-0.2mm}Q_\lambda $ . They conjectured that the dual power series are weight-generating functions for certain shifted plane partitions. We prove this conjecture. We also derive a related generating function formula for the images of $g\hspace {-0.1mm}p_\lambda $ and $g\hspace {-0.1mm}q_\lambda $ under the $\omega $ involution of the ring of symmetric functions. This confirms a conjecture of Chiu and the second author. Using these results, we verify a conjecture of Ikeda and Naruse that the $G\hspace {-0.2mm}Q$ -functions are a basis for a ring.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forum of Mathematics Sigma
Forum of Mathematics Sigma Mathematics-Statistics and Probability
CiteScore
1.90
自引率
5.90%
发文量
79
审稿时长
40 weeks
期刊介绍: Forum of Mathematics, Sigma is the open access alternative to the leading specialist mathematics journals. Editorial decisions are made by dedicated clusters of editors concentrated in the following areas: foundations of mathematics, discrete mathematics, algebra, number theory, algebraic and complex geometry, differential geometry and geometric analysis, topology, analysis, probability, differential equations, computational mathematics, applied analysis, mathematical physics, and theoretical computer science. This classification exists to aid the peer review process. Contributions which do not neatly fit within these categories are still welcome. Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas will be welcomed. All published papers will be free online to readers in perpetuity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信