{"title":"局部同调与福克斯比类","authors":"M. Ahmadi, A. Rahimi","doi":"10.1007/s10474-024-01391-5","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>R</i> be a commutative Noetherian ring and <i>I</i> a proper ideal of <i>R</i>. In this paper, we study finitely generated <i>R</i>-modules <i>M</i> with only\n one non-vanishing local cohomology module <span>\\({H}_I^c(M)\\)</span> where <span>\\(c=cd(I,M)\\)</span>. Let <i>C</i> be a semidualizing <i>R</i>-module. We investigate the\n conditions under which <span>\\({H}_I^c(M)\\)</span> belongs to either the Auslander class <span>\\(\\mathscr{A}_C(R)\\)</span> or the Bass class <span>\\(\\mathscr{B}_C(R)\\)</span>.</p></div>","PeriodicalId":50894,"journal":{"name":"Acta Mathematica Hungarica","volume":"172 1","pages":"131 - 145"},"PeriodicalIF":0.6000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local cohomology and Foxby classes\",\"authors\":\"M. Ahmadi, A. Rahimi\",\"doi\":\"10.1007/s10474-024-01391-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <i>R</i> be a commutative Noetherian ring and <i>I</i> a proper ideal of <i>R</i>. In this paper, we study finitely generated <i>R</i>-modules <i>M</i> with only\\n one non-vanishing local cohomology module <span>\\\\({H}_I^c(M)\\\\)</span> where <span>\\\\(c=cd(I,M)\\\\)</span>. Let <i>C</i> be a semidualizing <i>R</i>-module. We investigate the\\n conditions under which <span>\\\\({H}_I^c(M)\\\\)</span> belongs to either the Auslander class <span>\\\\(\\\\mathscr{A}_C(R)\\\\)</span> or the Bass class <span>\\\\(\\\\mathscr{B}_C(R)\\\\)</span>.</p></div>\",\"PeriodicalId\":50894,\"journal\":{\"name\":\"Acta Mathematica Hungarica\",\"volume\":\"172 1\",\"pages\":\"131 - 145\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Hungarica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10474-024-01391-5\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Hungarica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10474-024-01391-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
让 R 是一个交换诺特环,I 是 R 的一个专有理想。在本文中,我们研究的是有限生成的 R 模块 M,它只有一个非消失的局部同调模块 \({H}_I^c(M)\),其中 \(c=cd(I,M)\)。让 C 是一个半偶化 R 模块。我们将研究 \({H}_I^c(M)\) 属于奥斯兰德类 \(\mathscr{A}_C(R)\) 或巴斯类 \(\mathscr{B}_C(R)\) 的条件。
Let R be a commutative Noetherian ring and I a proper ideal of R. In this paper, we study finitely generated R-modules M with only
one non-vanishing local cohomology module \({H}_I^c(M)\) where \(c=cd(I,M)\). Let C be a semidualizing R-module. We investigate the
conditions under which \({H}_I^c(M)\) belongs to either the Auslander class \(\mathscr{A}_C(R)\) or the Bass class \(\mathscr{B}_C(R)\).
期刊介绍:
Acta Mathematica Hungarica is devoted to publishing research articles of top quality in all areas of pure and applied mathematics as well as in theoretical computer science. The journal is published yearly in three volumes (two issues per volume, in total 6 issues) in both print and electronic formats. Acta Mathematica Hungarica (formerly Acta Mathematica Academiae Scientiarum Hungaricae) was founded in 1950 by the Hungarian Academy of Sciences.