Alexander Chenyu Wang, Samuel Z. Chen, Evan Xie, Matthew Chang, Anthony Zhu, Adam Hansen, John Jerome, Miriam Rafailovich
{"title":"利用机器学习模拟旋涂聚苯乙烯薄膜的体积分子量、溶液浓度和厚度之间的相互依存关系","authors":"Alexander Chenyu Wang, Samuel Z. Chen, Evan Xie, Matthew Chang, Anthony Zhu, Adam Hansen, John Jerome, Miriam Rafailovich","doi":"10.1557/s43579-024-00527-6","DOIUrl":null,"url":null,"abstract":"<p>Spin coating is a quick and inexpensive method to create nanometer-thick thin films of various polymers on solid substrates. Since the film thickness determines the mechanical, optical, and degradation properties of the coating, it is essential to develop a simple method to predict thickness based on other manipulatable factors. In this study, a three-dimensional manifold simultaneously relating initial solution concentration, film thickness, and monodisperse bulk molecular weight is developed utilizing curve-fit machine learning on a dataset of spin coated polystyrene samples. Given values for any two of the three factors, the manifold presents an accurate corresponding value for the unknown.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>","PeriodicalId":19016,"journal":{"name":"MRS Communications","volume":"15 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Utilizing machine learning to model interdependency of bulk molecular weight, solution concentration, and thickness of spin coated polystyrene thin films\",\"authors\":\"Alexander Chenyu Wang, Samuel Z. Chen, Evan Xie, Matthew Chang, Anthony Zhu, Adam Hansen, John Jerome, Miriam Rafailovich\",\"doi\":\"10.1557/s43579-024-00527-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Spin coating is a quick and inexpensive method to create nanometer-thick thin films of various polymers on solid substrates. Since the film thickness determines the mechanical, optical, and degradation properties of the coating, it is essential to develop a simple method to predict thickness based on other manipulatable factors. In this study, a three-dimensional manifold simultaneously relating initial solution concentration, film thickness, and monodisperse bulk molecular weight is developed utilizing curve-fit machine learning on a dataset of spin coated polystyrene samples. Given values for any two of the three factors, the manifold presents an accurate corresponding value for the unknown.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical abstract</h3>\",\"PeriodicalId\":19016,\"journal\":{\"name\":\"MRS Communications\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MRS Communications\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1557/s43579-024-00527-6\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MRS Communications","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1557/s43579-024-00527-6","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Utilizing machine learning to model interdependency of bulk molecular weight, solution concentration, and thickness of spin coated polystyrene thin films
Spin coating is a quick and inexpensive method to create nanometer-thick thin films of various polymers on solid substrates. Since the film thickness determines the mechanical, optical, and degradation properties of the coating, it is essential to develop a simple method to predict thickness based on other manipulatable factors. In this study, a three-dimensional manifold simultaneously relating initial solution concentration, film thickness, and monodisperse bulk molecular weight is developed utilizing curve-fit machine learning on a dataset of spin coated polystyrene samples. Given values for any two of the three factors, the manifold presents an accurate corresponding value for the unknown.
期刊介绍:
MRS Communications is a full-color, high-impact journal focused on rapid publication of completed research with broad appeal to the materials community. MRS Communications offers a rapid but rigorous peer-review process and time to publication. Leveraging its access to the far-reaching technical expertise of MRS members and leading materials researchers from around the world, the journal boasts an experienced and highly respected board of principal editors and reviewers.