{"title":"基于部分可观测的非功能性需求满足情况的自适应决策","authors":"Luis Garcia, Huma Samin, Nelly Bencomo","doi":"10.1145/3643889","DOIUrl":null,"url":null,"abstract":"<p>Approaches that support the decision-making of self-adaptive and autonomous systems (SAS) often consider an idealized situation where (i) the system’s state is treated as fully observable by the monitoring infrastructure, and (ii) adaptation actions are assumed to have known, deterministic effects over the system. However, in practice, the system’s state may not be fully observable, and the adaptation actions may produce unexpected effects due to uncertain factors. This paper presents a novel probabilistic approach to quantify the uncertainty associated with the effects of adaptation actions on the state of a SAS. Supported by Bayesian inference and POMDPs (Partially-Observable Markov Decision Processes), these effects are translated into the satisfaction levels of the non-functional requirements (NFRs) to, therefore, drive the decision-making. The approach has been applied to two substantial case studies from the networking and Internet of Things (IoT) domains, using two different POMDP solvers. The results show that the approach delivers statistically significant improvements in supporting decision-making for SAS.</p>","PeriodicalId":50919,"journal":{"name":"ACM Transactions on Autonomous and Adaptive Systems","volume":"75 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decision Making for Self-adaptation based on Partially Observable Satisfaction of Non-Functional Requirements\",\"authors\":\"Luis Garcia, Huma Samin, Nelly Bencomo\",\"doi\":\"10.1145/3643889\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Approaches that support the decision-making of self-adaptive and autonomous systems (SAS) often consider an idealized situation where (i) the system’s state is treated as fully observable by the monitoring infrastructure, and (ii) adaptation actions are assumed to have known, deterministic effects over the system. However, in practice, the system’s state may not be fully observable, and the adaptation actions may produce unexpected effects due to uncertain factors. This paper presents a novel probabilistic approach to quantify the uncertainty associated with the effects of adaptation actions on the state of a SAS. Supported by Bayesian inference and POMDPs (Partially-Observable Markov Decision Processes), these effects are translated into the satisfaction levels of the non-functional requirements (NFRs) to, therefore, drive the decision-making. The approach has been applied to two substantial case studies from the networking and Internet of Things (IoT) domains, using two different POMDP solvers. The results show that the approach delivers statistically significant improvements in supporting decision-making for SAS.</p>\",\"PeriodicalId\":50919,\"journal\":{\"name\":\"ACM Transactions on Autonomous and Adaptive Systems\",\"volume\":\"75 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Autonomous and Adaptive Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3643889\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Autonomous and Adaptive Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3643889","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
摘要
支持自适应和自主系统(SAS)决策的方法通常会考虑一种理想化的情况,即:(i) 系统的状态被视为可被监控基础设施完全观测到;(ii) 适应行动被假定对系统产生已知的、确定性的影响。然而,在实际情况中,系统状态可能并非完全可观测,适应行动也可能因不确定因素而产生意想不到的效果。本文提出了一种新颖的概率方法,用于量化适应行动对系统状态影响的不确定性。在贝叶斯推理和 POMDP(部分可观测马尔可夫决策过程)的支持下,这些影响被转化为非功能需求(NFR)的满足程度,从而驱动决策。该方法已应用于网络和物联网(IoT)领域的两个重要案例研究,并使用了两个不同的 POMDP 求解器。结果表明,该方法在支持 SAS 决策方面取得了统计意义上的显著改进。
Decision Making for Self-adaptation based on Partially Observable Satisfaction of Non-Functional Requirements
Approaches that support the decision-making of self-adaptive and autonomous systems (SAS) often consider an idealized situation where (i) the system’s state is treated as fully observable by the monitoring infrastructure, and (ii) adaptation actions are assumed to have known, deterministic effects over the system. However, in practice, the system’s state may not be fully observable, and the adaptation actions may produce unexpected effects due to uncertain factors. This paper presents a novel probabilistic approach to quantify the uncertainty associated with the effects of adaptation actions on the state of a SAS. Supported by Bayesian inference and POMDPs (Partially-Observable Markov Decision Processes), these effects are translated into the satisfaction levels of the non-functional requirements (NFRs) to, therefore, drive the decision-making. The approach has been applied to two substantial case studies from the networking and Internet of Things (IoT) domains, using two different POMDP solvers. The results show that the approach delivers statistically significant improvements in supporting decision-making for SAS.
期刊介绍:
TAAS addresses research on autonomous and adaptive systems being undertaken by an increasingly interdisciplinary research community -- and provides a common platform under which this work can be published and disseminated. TAAS encourages contributions aimed at supporting the understanding, development, and control of such systems and of their behaviors.
TAAS addresses research on autonomous and adaptive systems being undertaken by an increasingly interdisciplinary research community - and provides a common platform under which this work can be published and disseminated. TAAS encourages contributions aimed at supporting the understanding, development, and control of such systems and of their behaviors. Contributions are expected to be based on sound and innovative theoretical models, algorithms, engineering and programming techniques, infrastructures and systems, or technological and application experiences.