{"title":"使用单个智能手机加速度计识别人类活动中传感器方向和位置问题的简单启发式特征的有效性","authors":"Arnab Barua, Xianta Jiang, Daniel Fuller","doi":"10.1186/s12938-024-01213-3","DOIUrl":null,"url":null,"abstract":"Human activity Recognition (HAR) using smartphone sensors suffers from two major problems: sensor orientation and placement. Sensor orientation and sensor placement problems refer to the variation in sensor signal for a particular activity due to sensors’ altering orientation and placement. Extracting orientation and position invariant features from raw sensor signals is a simple solution for tackling these problems. Using few heuristic features rather than numerous time-domain and frequency-domain features offers more simplicity in this approach. The heuristic features are features which have very minimal effects of sensor orientation and placement. In this study, we evaluated the effectiveness of four simple heuristic features in solving the sensor orientation and placement problems using a 1D-CNN–LSTM model for a data set consisting of over 12 million samples. We accumulated data from 42 participants for six common daily activities: Lying, Sitting, Walking, and Running at 3-Metabolic Equivalent of Tasks (METs), 5-METs and 7-METs from a single accelerometer sensor of a smartphone. We conducted our study for three smartphone positions: Pocket, Backpack and Hand. We extracted simple heuristic features from the accelerometer data and used them to train and test a 1D-CNN–LSTM model to evaluate their effectiveness in solving sensor orientation and placement problems. We performed intra-position and inter-position evaluations. In intra-position evaluation, we trained and tested the model using data from the same smartphone position, whereas, in inter-position evaluation, the training and test data was from different smartphone positions. For intra-position evaluation, we acquired 70–73% accuracy; for inter-position cases, the accuracies ranged between 59 and 69%. Moreover, we performed participant-specific and activity-specific analyses. We found that the simple heuristic features are considerably effective in solving orientation problems. With further development, such as fusing the heuristic features with other methods that eliminate placement issues, we can also achieve a better result than the outcome we achieved using the heuristic features for the sensor placement problem. In addition, we found the heuristic features to be more effective in recognizing high-intensity activities.","PeriodicalId":8927,"journal":{"name":"BioMedical Engineering OnLine","volume":"30 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effectiveness of simple heuristic features in sensor orientation and placement problems in human activity recognition using a single smartphone accelerometer\",\"authors\":\"Arnab Barua, Xianta Jiang, Daniel Fuller\",\"doi\":\"10.1186/s12938-024-01213-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human activity Recognition (HAR) using smartphone sensors suffers from two major problems: sensor orientation and placement. Sensor orientation and sensor placement problems refer to the variation in sensor signal for a particular activity due to sensors’ altering orientation and placement. Extracting orientation and position invariant features from raw sensor signals is a simple solution for tackling these problems. Using few heuristic features rather than numerous time-domain and frequency-domain features offers more simplicity in this approach. The heuristic features are features which have very minimal effects of sensor orientation and placement. In this study, we evaluated the effectiveness of four simple heuristic features in solving the sensor orientation and placement problems using a 1D-CNN–LSTM model for a data set consisting of over 12 million samples. We accumulated data from 42 participants for six common daily activities: Lying, Sitting, Walking, and Running at 3-Metabolic Equivalent of Tasks (METs), 5-METs and 7-METs from a single accelerometer sensor of a smartphone. We conducted our study for three smartphone positions: Pocket, Backpack and Hand. We extracted simple heuristic features from the accelerometer data and used them to train and test a 1D-CNN–LSTM model to evaluate their effectiveness in solving sensor orientation and placement problems. We performed intra-position and inter-position evaluations. In intra-position evaluation, we trained and tested the model using data from the same smartphone position, whereas, in inter-position evaluation, the training and test data was from different smartphone positions. For intra-position evaluation, we acquired 70–73% accuracy; for inter-position cases, the accuracies ranged between 59 and 69%. Moreover, we performed participant-specific and activity-specific analyses. We found that the simple heuristic features are considerably effective in solving orientation problems. With further development, such as fusing the heuristic features with other methods that eliminate placement issues, we can also achieve a better result than the outcome we achieved using the heuristic features for the sensor placement problem. In addition, we found the heuristic features to be more effective in recognizing high-intensity activities.\",\"PeriodicalId\":8927,\"journal\":{\"name\":\"BioMedical Engineering OnLine\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BioMedical Engineering OnLine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s12938-024-01213-3\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioMedical Engineering OnLine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12938-024-01213-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
The effectiveness of simple heuristic features in sensor orientation and placement problems in human activity recognition using a single smartphone accelerometer
Human activity Recognition (HAR) using smartphone sensors suffers from two major problems: sensor orientation and placement. Sensor orientation and sensor placement problems refer to the variation in sensor signal for a particular activity due to sensors’ altering orientation and placement. Extracting orientation and position invariant features from raw sensor signals is a simple solution for tackling these problems. Using few heuristic features rather than numerous time-domain and frequency-domain features offers more simplicity in this approach. The heuristic features are features which have very minimal effects of sensor orientation and placement. In this study, we evaluated the effectiveness of four simple heuristic features in solving the sensor orientation and placement problems using a 1D-CNN–LSTM model for a data set consisting of over 12 million samples. We accumulated data from 42 participants for six common daily activities: Lying, Sitting, Walking, and Running at 3-Metabolic Equivalent of Tasks (METs), 5-METs and 7-METs from a single accelerometer sensor of a smartphone. We conducted our study for three smartphone positions: Pocket, Backpack and Hand. We extracted simple heuristic features from the accelerometer data and used them to train and test a 1D-CNN–LSTM model to evaluate their effectiveness in solving sensor orientation and placement problems. We performed intra-position and inter-position evaluations. In intra-position evaluation, we trained and tested the model using data from the same smartphone position, whereas, in inter-position evaluation, the training and test data was from different smartphone positions. For intra-position evaluation, we acquired 70–73% accuracy; for inter-position cases, the accuracies ranged between 59 and 69%. Moreover, we performed participant-specific and activity-specific analyses. We found that the simple heuristic features are considerably effective in solving orientation problems. With further development, such as fusing the heuristic features with other methods that eliminate placement issues, we can also achieve a better result than the outcome we achieved using the heuristic features for the sensor placement problem. In addition, we found the heuristic features to be more effective in recognizing high-intensity activities.
期刊介绍:
BioMedical Engineering OnLine is an open access, peer-reviewed journal that is dedicated to publishing research in all areas of biomedical engineering.
BioMedical Engineering OnLine is aimed at readers and authors throughout the world, with an interest in using tools of the physical and data sciences and techniques in engineering to understand and solve problems in the biological and medical sciences. Topical areas include, but are not limited to:
Bioinformatics-
Bioinstrumentation-
Biomechanics-
Biomedical Devices & Instrumentation-
Biomedical Signal Processing-
Healthcare Information Systems-
Human Dynamics-
Neural Engineering-
Rehabilitation Engineering-
Biomaterials-
Biomedical Imaging & Image Processing-
BioMEMS and On-Chip Devices-
Bio-Micro/Nano Technologies-
Biomolecular Engineering-
Biosensors-
Cardiovascular Systems Engineering-
Cellular Engineering-
Clinical Engineering-
Computational Biology-
Drug Delivery Technologies-
Modeling Methodologies-
Nanomaterials and Nanotechnology in Biomedicine-
Respiratory Systems Engineering-
Robotics in Medicine-
Systems and Synthetic Biology-
Systems Biology-
Telemedicine/Smartphone Applications in Medicine-
Therapeutic Systems, Devices and Technologies-
Tissue Engineering