实体足迹:通过数字活动监测建模上下文用户状态

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Zeinab R. Yousefi, Tung Vuong, Marie AlGhossein, Tuukka Ruotsalo, Giulio Jaccuci, Samuel Kaski
{"title":"实体足迹:通过数字活动监测建模上下文用户状态","authors":"Zeinab R. Yousefi, Tung Vuong, Marie AlGhossein, Tuukka Ruotsalo, Giulio Jaccuci, Samuel Kaski","doi":"10.1145/3643893","DOIUrl":null,"url":null,"abstract":"<p>Our digital life consists of activities that are organized around tasks and exhibit different user states in the digital contexts around these activities. Previous works have shown that digital activity monitoring can be used to predict entities that users will need to perform digital tasks. There have been methods developed to automatically detect the tasks of a user. However, these studies typically support only specific applications and tasks and relatively little research has been conducted on real-life digital activities. This paper introduces user state modeling and prediction with contextual information captured as entities, recorded from real-world digital user behavior, called <i>entity footprinting</i>; a system that records users’ digital activities on their screens and proactively provides useful entities across application boundaries without requiring explicit query formulation. Our methodology is to detect contextual user states using latent representations of entities occurring in digital activities. Using topic models and recurrent neural networks, the model learns the latent representation of concurrent entities and their sequential relationships. We report a field study in which the digital activities of thirteen people were recorded continuously for 14 days. The model learned from this data is used to 1) predict contextual user states, and 2) predict relevant entities for the detected states. The results show improved user state detection accuracy and entity prediction performance compared to static, heuristic, and basic topic models. Our findings have implications for the design of proactive recommendation systems that can implicitly infer users’ contextual state by monitoring users’ digital activities and proactively recommending the right information at the right time.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Entity Footprinting: Modeling Contextual User States via Digital Activity Monitoring\",\"authors\":\"Zeinab R. Yousefi, Tung Vuong, Marie AlGhossein, Tuukka Ruotsalo, Giulio Jaccuci, Samuel Kaski\",\"doi\":\"10.1145/3643893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Our digital life consists of activities that are organized around tasks and exhibit different user states in the digital contexts around these activities. Previous works have shown that digital activity monitoring can be used to predict entities that users will need to perform digital tasks. There have been methods developed to automatically detect the tasks of a user. However, these studies typically support only specific applications and tasks and relatively little research has been conducted on real-life digital activities. This paper introduces user state modeling and prediction with contextual information captured as entities, recorded from real-world digital user behavior, called <i>entity footprinting</i>; a system that records users’ digital activities on their screens and proactively provides useful entities across application boundaries without requiring explicit query formulation. Our methodology is to detect contextual user states using latent representations of entities occurring in digital activities. Using topic models and recurrent neural networks, the model learns the latent representation of concurrent entities and their sequential relationships. We report a field study in which the digital activities of thirteen people were recorded continuously for 14 days. The model learned from this data is used to 1) predict contextual user states, and 2) predict relevant entities for the detected states. The results show improved user state detection accuracy and entity prediction performance compared to static, heuristic, and basic topic models. Our findings have implications for the design of proactive recommendation systems that can implicitly infer users’ contextual state by monitoring users’ digital activities and proactively recommending the right information at the right time.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3643893\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3643893","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

我们的数字生活由各种活动组成,这些活动围绕任务展开,并在围绕这些活动的数字环境中呈现出不同的用户状态。以往的研究表明,数字活动监测可用于预测用户执行数字任务所需的实体。目前已经开发出自动检测用户任务的方法。不过,这些研究通常只支持特定的应用和任务,而对现实生活中的数字活动进行的研究相对较少。本文介绍了用户状态建模和预测,以及从真实世界的数字用户行为中记录的以实体形式捕获的上下文信息,即实体足迹;该系统记录用户屏幕上的数字活动,并主动提供跨应用边界的有用实体,而无需明确的查询表述。我们的方法是利用数字活动中出现的实体的潜在表征来检测用户的上下文状态。利用主题模型和递归神经网络,该模型可以学习并发实体的潜在表征及其顺序关系。我们报告了一项实地研究,该研究连续记录了 13 个人 14 天的数字活动。从这些数据中学到的模型用于:1)预测用户的上下文状态;2)预测检测到的状态的相关实体。结果表明,与静态模型、启发式模型和基本主题模型相比,用户状态检测准确率和实体预测性能都有所提高。我们的发现对主动推荐系统的设计具有重要意义,该系统可以通过监控用户的数字活动隐式推断用户的上下文状态,并在适当的时间主动推荐适当的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Entity Footprinting: Modeling Contextual User States via Digital Activity Monitoring

Our digital life consists of activities that are organized around tasks and exhibit different user states in the digital contexts around these activities. Previous works have shown that digital activity monitoring can be used to predict entities that users will need to perform digital tasks. There have been methods developed to automatically detect the tasks of a user. However, these studies typically support only specific applications and tasks and relatively little research has been conducted on real-life digital activities. This paper introduces user state modeling and prediction with contextual information captured as entities, recorded from real-world digital user behavior, called entity footprinting; a system that records users’ digital activities on their screens and proactively provides useful entities across application boundaries without requiring explicit query formulation. Our methodology is to detect contextual user states using latent representations of entities occurring in digital activities. Using topic models and recurrent neural networks, the model learns the latent representation of concurrent entities and their sequential relationships. We report a field study in which the digital activities of thirteen people were recorded continuously for 14 days. The model learned from this data is used to 1) predict contextual user states, and 2) predict relevant entities for the detected states. The results show improved user state detection accuracy and entity prediction performance compared to static, heuristic, and basic topic models. Our findings have implications for the design of proactive recommendation systems that can implicitly infer users’ contextual state by monitoring users’ digital activities and proactively recommending the right information at the right time.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信