Baiqiang Leng, Jingwei Huang, Guanlin Shen, Bin Wang
{"title":"多流变形中的形状嵌入和检索","authors":"Baiqiang Leng, Jingwei Huang, Guanlin Shen, Bin Wang","doi":"10.1007/s41095-022-0315-3","DOIUrl":null,"url":null,"abstract":"<p>We propose a unified 3D flow framework for joint learning of shape embedding and deformation for different categories. Our goal is to recover shapes from imperfect point clouds by fitting the best shape template in a shape repository after deformation. Accordingly, we learn a shape embedding for template retrieval and a flow-based network for robust deformation. We note that the deformation flow can be quite different for different shape categories. Therefore, we introduce a novel multi-hub module to learn multiple modes of deformation to incorporate such variation, providing a network which can handle a wide range of objects from different categories. The shape embedding is designed to retrieve the best-fit template as the nearest neighbor in a latent space. We replace the standard fully connected layer with a tiny structure in the embedding that significantly reduces network complexity and further improves deformation quality. Experiments show the superiority of our method to existing state-of-the-art methods via qualitative and quantitative comparisons. Finally, our method provides efficient and flexible deformation that can further be used for novel shape design.\n</p>","PeriodicalId":37301,"journal":{"name":"Computational Visual Media","volume":null,"pages":null},"PeriodicalIF":17.3000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shape embedding and retrieval in multi-flow deformation\",\"authors\":\"Baiqiang Leng, Jingwei Huang, Guanlin Shen, Bin Wang\",\"doi\":\"10.1007/s41095-022-0315-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We propose a unified 3D flow framework for joint learning of shape embedding and deformation for different categories. Our goal is to recover shapes from imperfect point clouds by fitting the best shape template in a shape repository after deformation. Accordingly, we learn a shape embedding for template retrieval and a flow-based network for robust deformation. We note that the deformation flow can be quite different for different shape categories. Therefore, we introduce a novel multi-hub module to learn multiple modes of deformation to incorporate such variation, providing a network which can handle a wide range of objects from different categories. The shape embedding is designed to retrieve the best-fit template as the nearest neighbor in a latent space. We replace the standard fully connected layer with a tiny structure in the embedding that significantly reduces network complexity and further improves deformation quality. Experiments show the superiority of our method to existing state-of-the-art methods via qualitative and quantitative comparisons. Finally, our method provides efficient and flexible deformation that can further be used for novel shape design.\\n</p>\",\"PeriodicalId\":37301,\"journal\":{\"name\":\"Computational Visual Media\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":17.3000,\"publicationDate\":\"2024-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Visual Media\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s41095-022-0315-3\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Visual Media","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s41095-022-0315-3","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Shape embedding and retrieval in multi-flow deformation
We propose a unified 3D flow framework for joint learning of shape embedding and deformation for different categories. Our goal is to recover shapes from imperfect point clouds by fitting the best shape template in a shape repository after deformation. Accordingly, we learn a shape embedding for template retrieval and a flow-based network for robust deformation. We note that the deformation flow can be quite different for different shape categories. Therefore, we introduce a novel multi-hub module to learn multiple modes of deformation to incorporate such variation, providing a network which can handle a wide range of objects from different categories. The shape embedding is designed to retrieve the best-fit template as the nearest neighbor in a latent space. We replace the standard fully connected layer with a tiny structure in the embedding that significantly reduces network complexity and further improves deformation quality. Experiments show the superiority of our method to existing state-of-the-art methods via qualitative and quantitative comparisons. Finally, our method provides efficient and flexible deformation that can further be used for novel shape design.
期刊介绍:
Computational Visual Media is a peer-reviewed open access journal. It publishes original high-quality research papers and significant review articles on novel ideas, methods, and systems relevant to visual media.
Computational Visual Media publishes articles that focus on, but are not limited to, the following areas:
• Editing and composition of visual media
• Geometric computing for images and video
• Geometry modeling and processing
• Machine learning for visual media
• Physically based animation
• Realistic rendering
• Recognition and understanding of visual media
• Visual computing for robotics
• Visualization and visual analytics
Other interdisciplinary research into visual media that combines aspects of computer graphics, computer vision, image and video processing, geometric computing, and machine learning is also within the journal''s scope.
This is an open access journal, published quarterly by Tsinghua University Press and Springer. The open access fees (article-processing charges) are fully sponsored by Tsinghua University, China. Authors can publish in the journal without any additional charges.