{"title":"弱奇异 Volterra 积分微分方程的分数配位法的收敛性和超收敛性","authors":"","doi":"10.1007/s10543-024-01011-2","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>A collocation method for the numerical solution of Volterra integro-differential equations with weakly singular kernels, based on piecewise polynomials of fractional order, is constructed and analysed. Typical exact solutions of this class of problems have a weak singularity at the initial time <span> <span>\\(t=0\\)</span> </span>. A rigorous error analysis of our method shows that, with an appropriate choice of the fractional-order polynomials and a suitably graded mesh, one can attain optimal orders of convergence to the exact solution and its derivative, and certain superconvergence results are also derived. In particular, our analysis shows that on a uniform mesh our method attains a higher order of convergence than standard piecewise polynomial collocation. Numerical examples are presented to demonstrate the sharpness of our theoretical results.</p>","PeriodicalId":55351,"journal":{"name":"BIT Numerical Mathematics","volume":"45 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convergence and superconvergence of a fractional collocation method for weakly singular Volterra integro-differential equations\",\"authors\":\"\",\"doi\":\"10.1007/s10543-024-01011-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>A collocation method for the numerical solution of Volterra integro-differential equations with weakly singular kernels, based on piecewise polynomials of fractional order, is constructed and analysed. Typical exact solutions of this class of problems have a weak singularity at the initial time <span> <span>\\\\(t=0\\\\)</span> </span>. A rigorous error analysis of our method shows that, with an appropriate choice of the fractional-order polynomials and a suitably graded mesh, one can attain optimal orders of convergence to the exact solution and its derivative, and certain superconvergence results are also derived. In particular, our analysis shows that on a uniform mesh our method attains a higher order of convergence than standard piecewise polynomial collocation. Numerical examples are presented to demonstrate the sharpness of our theoretical results.</p>\",\"PeriodicalId\":55351,\"journal\":{\"name\":\"BIT Numerical Mathematics\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BIT Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10543-024-01011-2\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BIT Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10543-024-01011-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Convergence and superconvergence of a fractional collocation method for weakly singular Volterra integro-differential equations
Abstract
A collocation method for the numerical solution of Volterra integro-differential equations with weakly singular kernels, based on piecewise polynomials of fractional order, is constructed and analysed. Typical exact solutions of this class of problems have a weak singularity at the initial time \(t=0\). A rigorous error analysis of our method shows that, with an appropriate choice of the fractional-order polynomials and a suitably graded mesh, one can attain optimal orders of convergence to the exact solution and its derivative, and certain superconvergence results are also derived. In particular, our analysis shows that on a uniform mesh our method attains a higher order of convergence than standard piecewise polynomial collocation. Numerical examples are presented to demonstrate the sharpness of our theoretical results.
期刊介绍:
The journal BIT has been published since 1961. BIT publishes original research papers in the rapidly developing field of numerical analysis. The essential areas covered by BIT are development and analysis of numerical methods as well as the design and use of algorithms for scientific computing. Topics emphasized by BIT include numerical methods in approximation, linear algebra, and ordinary and partial differential equations.