{"title":"可重构行为辅助机器人的设计与评估:试点研究","authors":"Enming Shi, Wenzhuo Zhi, Wanxin Chen, Yuhang Han, Bi Zhang, Xingang Zhao","doi":"10.3389/fnbot.2024.1332721","DOIUrl":null,"url":null,"abstract":"IntroductionFor patients with functional motor disorders of the lower limbs due to brain damage or accidental injury, restoring the ability to stand and walk plays an important role in clinical rehabilitation. Lower limb exoskeleton robots generally require patients to convert themselves to a standing position for use, while being a wearable device with limited movement distance.MethodsThis paper proposes a reconfigurable behavioral assistive robot that integrates the functions of an exoskeleton robot and an assistive standing wheelchair through a novel mechanism. The new mechanism is based on a four-bar linkage, and through simple and stable conformal transformations, the robot can switch between exoskeleton state, sit-to-stand support state, and wheelchair state. This enables the robot to achieve the functions of assisted walking, assisted standing up, supported standing and wheelchair mobility, respectively, thereby meeting the daily activity needs of sit-to-stand transitions and gait training. The configuration transformation module controls seamless switching between different configurations through an industrial computer. Experimental protocols have been developed for wearable testing of robotic prototypes not only for healthy subjects but also for simulated hemiplegic patients.ResultsThe experimental results indicate that the gait tracking effect during robot-assisted walking is satisfactory, and there are no sudden speed changes during the assisted standing up process, providing smooth support to the wearer. Meanwhile, the activation of the main force-generating muscles of the legs and the plantar pressure decreases significantly in healthy subjects and simulated hemiplegic patients wearing the robot for assisted walking and assisted standing-up compared to the situation when the robot is not worn.DiscussionThese experimental findings demonstrate that the reconfigurable behavioral assistive robot prototype of this study is effective, reducing the muscular burden on the wearer during walking and standing up, and provide effective support for the subject's body. The experimental results objectively and comprehensively showcase the effectiveness and potential of the reconfigurable behavioral assistive robot in the realms of behavioral assistance and rehabilitation training.","PeriodicalId":12628,"journal":{"name":"Frontiers in Neurorobotics","volume":"5 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and assessment of a reconfigurable behavioral assistive robot: a pilot study\",\"authors\":\"Enming Shi, Wenzhuo Zhi, Wanxin Chen, Yuhang Han, Bi Zhang, Xingang Zhao\",\"doi\":\"10.3389/fnbot.2024.1332721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"IntroductionFor patients with functional motor disorders of the lower limbs due to brain damage or accidental injury, restoring the ability to stand and walk plays an important role in clinical rehabilitation. Lower limb exoskeleton robots generally require patients to convert themselves to a standing position for use, while being a wearable device with limited movement distance.MethodsThis paper proposes a reconfigurable behavioral assistive robot that integrates the functions of an exoskeleton robot and an assistive standing wheelchair through a novel mechanism. The new mechanism is based on a four-bar linkage, and through simple and stable conformal transformations, the robot can switch between exoskeleton state, sit-to-stand support state, and wheelchair state. This enables the robot to achieve the functions of assisted walking, assisted standing up, supported standing and wheelchair mobility, respectively, thereby meeting the daily activity needs of sit-to-stand transitions and gait training. The configuration transformation module controls seamless switching between different configurations through an industrial computer. Experimental protocols have been developed for wearable testing of robotic prototypes not only for healthy subjects but also for simulated hemiplegic patients.ResultsThe experimental results indicate that the gait tracking effect during robot-assisted walking is satisfactory, and there are no sudden speed changes during the assisted standing up process, providing smooth support to the wearer. Meanwhile, the activation of the main force-generating muscles of the legs and the plantar pressure decreases significantly in healthy subjects and simulated hemiplegic patients wearing the robot for assisted walking and assisted standing-up compared to the situation when the robot is not worn.DiscussionThese experimental findings demonstrate that the reconfigurable behavioral assistive robot prototype of this study is effective, reducing the muscular burden on the wearer during walking and standing up, and provide effective support for the subject's body. The experimental results objectively and comprehensively showcase the effectiveness and potential of the reconfigurable behavioral assistive robot in the realms of behavioral assistance and rehabilitation training.\",\"PeriodicalId\":12628,\"journal\":{\"name\":\"Frontiers in Neurorobotics\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Neurorobotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3389/fnbot.2024.1332721\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neurorobotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3389/fnbot.2024.1332721","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Design and assessment of a reconfigurable behavioral assistive robot: a pilot study
IntroductionFor patients with functional motor disorders of the lower limbs due to brain damage or accidental injury, restoring the ability to stand and walk plays an important role in clinical rehabilitation. Lower limb exoskeleton robots generally require patients to convert themselves to a standing position for use, while being a wearable device with limited movement distance.MethodsThis paper proposes a reconfigurable behavioral assistive robot that integrates the functions of an exoskeleton robot and an assistive standing wheelchair through a novel mechanism. The new mechanism is based on a four-bar linkage, and through simple and stable conformal transformations, the robot can switch between exoskeleton state, sit-to-stand support state, and wheelchair state. This enables the robot to achieve the functions of assisted walking, assisted standing up, supported standing and wheelchair mobility, respectively, thereby meeting the daily activity needs of sit-to-stand transitions and gait training. The configuration transformation module controls seamless switching between different configurations through an industrial computer. Experimental protocols have been developed for wearable testing of robotic prototypes not only for healthy subjects but also for simulated hemiplegic patients.ResultsThe experimental results indicate that the gait tracking effect during robot-assisted walking is satisfactory, and there are no sudden speed changes during the assisted standing up process, providing smooth support to the wearer. Meanwhile, the activation of the main force-generating muscles of the legs and the plantar pressure decreases significantly in healthy subjects and simulated hemiplegic patients wearing the robot for assisted walking and assisted standing-up compared to the situation when the robot is not worn.DiscussionThese experimental findings demonstrate that the reconfigurable behavioral assistive robot prototype of this study is effective, reducing the muscular burden on the wearer during walking and standing up, and provide effective support for the subject's body. The experimental results objectively and comprehensively showcase the effectiveness and potential of the reconfigurable behavioral assistive robot in the realms of behavioral assistance and rehabilitation training.
期刊介绍:
Frontiers in Neurorobotics publishes rigorously peer-reviewed research in the science and technology of embodied autonomous neural systems. Specialty Chief Editors Alois C. Knoll and Florian Röhrbein at the Technische Universität München are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide.
Neural systems include brain-inspired algorithms (e.g. connectionist networks), computational models of biological neural networks (e.g. artificial spiking neural nets, large-scale simulations of neural microcircuits) and actual biological systems (e.g. in vivo and in vitro neural nets). The focus of the journal is the embodiment of such neural systems in artificial software and hardware devices, machines, robots or any other form of physical actuation. This also includes prosthetic devices, brain machine interfaces, wearable systems, micro-machines, furniture, home appliances, as well as systems for managing micro and macro infrastructures. Frontiers in Neurorobotics also aims to publish radically new tools and methods to study plasticity and development of autonomous self-learning systems that are capable of acquiring knowledge in an open-ended manner. Models complemented with experimental studies revealing self-organizing principles of embodied neural systems are welcome. Our journal also publishes on the micro and macro engineering and mechatronics of robotic devices driven by neural systems, as well as studies on the impact that such systems will have on our daily life.