Mari Napari, Spyros Stathopoulos, Themis Prodromakis, Firman Simanjuntak
{"title":"通过界面诱导内阻实现双层 $$\\hbox {HfO}_{textrm{x}}$ / $$\\hbox {TaO}_{textrm{x}}$ 存储器件中的无成型和非线性电阻切换","authors":"Mari Napari, Spyros Stathopoulos, Themis Prodromakis, Firman Simanjuntak","doi":"10.1007/s13391-023-00481-w","DOIUrl":null,"url":null,"abstract":"<p>Resistive switching memory devices with tantalum oxide (<span>\\(\\hbox {TaO}_{\\textrm{x}}\\)</span>) and hafnium oxide (<span>\\(\\hbox {HfO}_{\\textrm{x}}\\)</span>) mono- and bilayers were fabricated using atomic layer deposition. The bilayer devices with Ti and TiN electrodes show non-linear switching characteristics, and can operate without requiring an initial electroforming step. The insertion of the <span>\\(\\hbox {HfO}_{\\textrm{x}}\\)</span> layer induces the switching behaviour on single layer <span>\\(\\hbox {TaO}_{\\textrm{x}}\\)</span> that shows Zener diode-like characteristics, with conductivity depending on the top electrode metal. The electronic conductivity mechanism study shows Schottky emission at low voltage regime followed by tunneling at higher applied bias, both indicating interface-dominated conduction. The switching mechanism study is supported by X-ray photoelectron spectroscopy characterization of the films that show a formation of <span>\\(\\hbox {TaO}_{\\textrm{x}}\\hbox {N}_{\\textrm{y}}\\)</span> and <span>\\(\\hbox {TaN}_{\\textrm{x}}\\)</span> species at the oxide-electrode interface. This interfacial layer serves as a high resistivity barrier layer enabling the homogeneous resistive switching behavior.</p>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 4","pages":"363 - 371"},"PeriodicalIF":2.1000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13391-023-00481-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Forming-Free and Non-linear Resistive Switching in Bilayer \\\\(\\\\hbox {HfO}_{\\\\textrm{x}}\\\\)/\\\\(\\\\hbox {TaO}_{\\\\textrm{x}}\\\\) Memory Devices by Interface-Induced Internal Resistance\",\"authors\":\"Mari Napari, Spyros Stathopoulos, Themis Prodromakis, Firman Simanjuntak\",\"doi\":\"10.1007/s13391-023-00481-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Resistive switching memory devices with tantalum oxide (<span>\\\\(\\\\hbox {TaO}_{\\\\textrm{x}}\\\\)</span>) and hafnium oxide (<span>\\\\(\\\\hbox {HfO}_{\\\\textrm{x}}\\\\)</span>) mono- and bilayers were fabricated using atomic layer deposition. The bilayer devices with Ti and TiN electrodes show non-linear switching characteristics, and can operate without requiring an initial electroforming step. The insertion of the <span>\\\\(\\\\hbox {HfO}_{\\\\textrm{x}}\\\\)</span> layer induces the switching behaviour on single layer <span>\\\\(\\\\hbox {TaO}_{\\\\textrm{x}}\\\\)</span> that shows Zener diode-like characteristics, with conductivity depending on the top electrode metal. The electronic conductivity mechanism study shows Schottky emission at low voltage regime followed by tunneling at higher applied bias, both indicating interface-dominated conduction. The switching mechanism study is supported by X-ray photoelectron spectroscopy characterization of the films that show a formation of <span>\\\\(\\\\hbox {TaO}_{\\\\textrm{x}}\\\\hbox {N}_{\\\\textrm{y}}\\\\)</span> and <span>\\\\(\\\\hbox {TaN}_{\\\\textrm{x}}\\\\)</span> species at the oxide-electrode interface. This interfacial layer serves as a high resistivity barrier layer enabling the homogeneous resistive switching behavior.</p>\",\"PeriodicalId\":536,\"journal\":{\"name\":\"Electronic Materials Letters\",\"volume\":\"20 4\",\"pages\":\"363 - 371\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s13391-023-00481-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Materials Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13391-023-00481-w\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s13391-023-00481-w","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
摘要 利用原子层沉积法制造了具有氧化钽(\(\hbox {TaO}_{\textrm{x}}/\)和氧化铪(\(\hbox {HfO}_{\textrm{x}}/\)单层和双层的电阻式开关存储器件。带有 Ti 和 TiN 电极的双层器件显示出非线性开关特性,并且无需初始电铸步骤即可运行。插入(\hbox {HfO}_{\textrm{x}})层会诱导单层(\hbox {TaO}_{\textrm{x}})上的开关行为,从而显示出齐纳二极管般的特性,其电导率取决于顶层电极金属。电子传导机制研究表明,在低电压条件下会出现肖特基发射,随后在较高的外加偏压条件下会出现隧道现象,这两种现象都表明界面主导传导。薄膜的 X 射线光电子能谱表征为开关机制研究提供了支持,该表征显示在氧化物-电极界面上形成了 \(\hbox {TaO}_{\textrm{x}}\hbox {N}_{\textrm{y}}\) 和 \(\hbox {TaN}_{\textrm{x}}\) 物种。该界面层可作为高电阻率阻挡层,从而实现均匀的电阻开关行为。
Forming-Free and Non-linear Resistive Switching in Bilayer \(\hbox {HfO}_{\textrm{x}}\)/\(\hbox {TaO}_{\textrm{x}}\) Memory Devices by Interface-Induced Internal Resistance
Resistive switching memory devices with tantalum oxide (\(\hbox {TaO}_{\textrm{x}}\)) and hafnium oxide (\(\hbox {HfO}_{\textrm{x}}\)) mono- and bilayers were fabricated using atomic layer deposition. The bilayer devices with Ti and TiN electrodes show non-linear switching characteristics, and can operate without requiring an initial electroforming step. The insertion of the \(\hbox {HfO}_{\textrm{x}}\) layer induces the switching behaviour on single layer \(\hbox {TaO}_{\textrm{x}}\) that shows Zener diode-like characteristics, with conductivity depending on the top electrode metal. The electronic conductivity mechanism study shows Schottky emission at low voltage regime followed by tunneling at higher applied bias, both indicating interface-dominated conduction. The switching mechanism study is supported by X-ray photoelectron spectroscopy characterization of the films that show a formation of \(\hbox {TaO}_{\textrm{x}}\hbox {N}_{\textrm{y}}\) and \(\hbox {TaN}_{\textrm{x}}\) species at the oxide-electrode interface. This interfacial layer serves as a high resistivity barrier layer enabling the homogeneous resistive switching behavior.
期刊介绍:
Electronic Materials Letters is an official journal of the Korean Institute of Metals and Materials. It is a peer-reviewed international journal publishing print and online version. It covers all disciplines of research and technology in electronic materials. Emphasis is placed on science, engineering and applications of advanced materials, including electronic, magnetic, optical, organic, electrochemical, mechanical, and nanoscale materials. The aspects of synthesis and processing include thin films, nanostructures, self assembly, and bulk, all related to thermodynamics, kinetics and/or modeling.