平面 V 线 2 张量断层扫描

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Gaik Ambartsoumian, Rohit Kumar Mishra, Indrani Zamindar
{"title":"平面 V 线 2 张量断层扫描","authors":"Gaik Ambartsoumian, Rohit Kumar Mishra, Indrani Zamindar","doi":"10.1088/1361-6420/ad1f83","DOIUrl":null,"url":null,"abstract":"In this article, we introduce and study various V-line transforms (VLTs) defined on symmetric 2-tensor fields in <inline-formula>\n<tex-math><?CDATA $\\mathbb{R}^2$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:msup><mml:mrow><mml:mi mathvariant=\"double-struck\">R</mml:mi></mml:mrow><mml:mn>2</mml:mn></mml:msup></mml:math>\n<inline-graphic xlink:href=\"ipad1f83ieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>. The operators of interest include the longitudinal, transverse, and mixed VLTs, their integral moments, and the star transform. With the exception of the star transform, all these operators are natural generalizations to the broken-ray trajectories of the corresponding well-studied concepts defined for straight-line paths of integration. We characterize the kernels of the VLTs and derive exact formulas for reconstruction of tensor fields from various combinations of these transforms. The star transform on tensor fields is an extension of the corresponding concepts that have been previously studied on vector fields and scalar fields (functions). We describe all injective configurations of the star transform on symmetric 2-tensor fields and derive an exact, closed-form inversion formula for that operator.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"V-line 2-tensor tomography in the plane\",\"authors\":\"Gaik Ambartsoumian, Rohit Kumar Mishra, Indrani Zamindar\",\"doi\":\"10.1088/1361-6420/ad1f83\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we introduce and study various V-line transforms (VLTs) defined on symmetric 2-tensor fields in <inline-formula>\\n<tex-math><?CDATA $\\\\mathbb{R}^2$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:msup><mml:mrow><mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi></mml:mrow><mml:mn>2</mml:mn></mml:msup></mml:math>\\n<inline-graphic xlink:href=\\\"ipad1f83ieqn1.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>. The operators of interest include the longitudinal, transverse, and mixed VLTs, their integral moments, and the star transform. With the exception of the star transform, all these operators are natural generalizations to the broken-ray trajectories of the corresponding well-studied concepts defined for straight-line paths of integration. We characterize the kernels of the VLTs and derive exact formulas for reconstruction of tensor fields from various combinations of these transforms. The star transform on tensor fields is an extension of the corresponding concepts that have been previously studied on vector fields and scalar fields (functions). We describe all injective configurations of the star transform on symmetric 2-tensor fields and derive an exact, closed-form inversion formula for that operator.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6420/ad1f83\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1088/1361-6420/ad1f83","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍并研究了定义在 R2 中对称 2 张量场上的各种 V 线变换(VLT)。我们感兴趣的算子包括纵向、横向和混合 VLT、它们的积分矩以及星变换。除星形变换外,所有这些算子都是对破碎射线轨迹的自然概括,而破碎射线轨迹是为直线积分路径定义的相应概念。我们描述了 VLT 的内核特征,并推导出从这些变换的各种组合中重建张量场的精确公式。张量场的星形变换是之前研究过的向量场和标量场(函数)相应概念的扩展。我们描述了对称 2 张量场上星形变换的所有注入配置,并推导出该算子的精确闭式反演公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
V-line 2-tensor tomography in the plane
In this article, we introduce and study various V-line transforms (VLTs) defined on symmetric 2-tensor fields in R2 . The operators of interest include the longitudinal, transverse, and mixed VLTs, their integral moments, and the star transform. With the exception of the star transform, all these operators are natural generalizations to the broken-ray trajectories of the corresponding well-studied concepts defined for straight-line paths of integration. We characterize the kernels of the VLTs and derive exact formulas for reconstruction of tensor fields from various combinations of these transforms. The star transform on tensor fields is an extension of the corresponding concepts that have been previously studied on vector fields and scalar fields (functions). We describe all injective configurations of the star transform on symmetric 2-tensor fields and derive an exact, closed-form inversion formula for that operator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信