通过稳定映射求二次霍奇积分的关系

Georgios Politopoulos
{"title":"通过稳定映射求二次霍奇积分的关系","authors":"Georgios Politopoulos","doi":"10.4153/s0008439524000080","DOIUrl":null,"url":null,"abstract":"<p>Following Faber–Pandharipande, we use the virtual localization formula for the moduli space of stable maps to <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240207132305625-0891:S0008439524000080:S0008439524000080_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb {P}^{1}$</span></span></img></span></span> to compute relations between Hodge integrals. We prove that certain generating series of these integrals are polynomials.</p>","PeriodicalId":501184,"journal":{"name":"Canadian Mathematical Bulletin","volume":"131 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relations for quadratic Hodge integrals via stable maps\",\"authors\":\"Georgios Politopoulos\",\"doi\":\"10.4153/s0008439524000080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Following Faber–Pandharipande, we use the virtual localization formula for the moduli space of stable maps to <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240207132305625-0891:S0008439524000080:S0008439524000080_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbb {P}^{1}$</span></span></img></span></span> to compute relations between Hodge integrals. We prove that certain generating series of these integrals are polynomials.</p>\",\"PeriodicalId\":501184,\"journal\":{\"name\":\"Canadian Mathematical Bulletin\",\"volume\":\"131 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Mathematical Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4153/s0008439524000080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Mathematical Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4153/s0008439524000080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

继法布尔-潘达里潘德之后,我们利用稳定映射到 $\mathbb {P}^{1}$ 的模空间的虚拟局部化公式来计算霍奇积分之间的关系。我们证明了这些积分的某些生成数列是多项式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Relations for quadratic Hodge integrals via stable maps

Following Faber–Pandharipande, we use the virtual localization formula for the moduli space of stable maps to $\mathbb {P}^{1}$ to compute relations between Hodge integrals. We prove that certain generating series of these integrals are polynomials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信