{"title":"通过稳定映射求二次霍奇积分的关系","authors":"Georgios Politopoulos","doi":"10.4153/s0008439524000080","DOIUrl":null,"url":null,"abstract":"<p>Following Faber–Pandharipande, we use the virtual localization formula for the moduli space of stable maps to <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240207132305625-0891:S0008439524000080:S0008439524000080_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb {P}^{1}$</span></span></img></span></span> to compute relations between Hodge integrals. We prove that certain generating series of these integrals are polynomials.</p>","PeriodicalId":501184,"journal":{"name":"Canadian Mathematical Bulletin","volume":"131 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relations for quadratic Hodge integrals via stable maps\",\"authors\":\"Georgios Politopoulos\",\"doi\":\"10.4153/s0008439524000080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Following Faber–Pandharipande, we use the virtual localization formula for the moduli space of stable maps to <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240207132305625-0891:S0008439524000080:S0008439524000080_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbb {P}^{1}$</span></span></img></span></span> to compute relations between Hodge integrals. We prove that certain generating series of these integrals are polynomials.</p>\",\"PeriodicalId\":501184,\"journal\":{\"name\":\"Canadian Mathematical Bulletin\",\"volume\":\"131 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Mathematical Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4153/s0008439524000080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Mathematical Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4153/s0008439524000080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Relations for quadratic Hodge integrals via stable maps
Following Faber–Pandharipande, we use the virtual localization formula for the moduli space of stable maps to $\mathbb {P}^{1}$ to compute relations between Hodge integrals. We prove that certain generating series of these integrals are polynomials.