求助PDF
{"title":"奇数阶大最小度图的过满猜想","authors":"Songling Shan","doi":"10.1002/jgt.23077","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> be a simple graph with maximum degree <span></span><math>\n <semantics>\n <mrow>\n <mi>Δ</mi>\n <mrow>\n <mo>(</mo>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${\\rm{\\Delta }}(G)$</annotation>\n </semantics></math>. A subgraph <span></span><math>\n <semantics>\n <mrow>\n <mi>H</mi>\n </mrow>\n <annotation> $H$</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is overfull if <span></span><math>\n <semantics>\n <mrow>\n <mo>∣</mo>\n <mi>E</mi>\n <mrow>\n <mo>(</mo>\n <mi>H</mi>\n <mo>)</mo>\n </mrow>\n <mo>∣</mo>\n <mo>></mo>\n <mi>Δ</mi>\n <mrow>\n <mo>(</mo>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n <mrow>\n <mo>⌊</mo>\n <mrow>\n <mfrac>\n <mn>1</mn>\n <mn>2</mn>\n </mfrac>\n <mo>∣</mo>\n <mi>V</mi>\n <mrow>\n <mo>(</mo>\n <mi>H</mi>\n <mo>)</mo>\n </mrow>\n <mo>∣</mo>\n </mrow>\n <mo>⌋</mo>\n </mrow>\n </mrow>\n <annotation> $| E(H)| \\gt {\\rm{\\Delta }}(G)\\lfloor \\frac{1}{2}| V(H)| \\rfloor $</annotation>\n </semantics></math>. Chetwynd and Hilton in 1986 conjectured that a graph <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <mi>Δ</mi>\n <mrow>\n <mo>(</mo>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n <mo>></mo>\n <mfrac>\n <mn>1</mn>\n <mn>3</mn>\n </mfrac>\n <mo>∣</mo>\n <mi>V</mi>\n <mrow>\n <mo>(</mo>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n <mo>∣</mo>\n </mrow>\n <annotation> ${\\rm{\\Delta }}(G)\\gt \\frac{1}{3}| V(G)| $</annotation>\n </semantics></math> has chromatic index <span></span><math>\n <semantics>\n <mrow>\n <mi>Δ</mi>\n <mrow>\n <mo>(</mo>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${\\rm{\\Delta }}(G)$</annotation>\n </semantics></math> if and only if <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> contains no overfull subgraph. Let <span></span><math>\n <semantics>\n <mrow>\n <mn>0</mn>\n <mo><</mo>\n <mi>ε</mi>\n <mo><</mo>\n <mn>1</mn>\n </mrow>\n <annotation> $0\\lt \\varepsilon \\lt 1$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math> be sufficiently large, and <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> be graph on <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math> vertices with minimum degree at least <span></span><math>\n <semantics>\n <mrow>\n <mfrac>\n <mn>1</mn>\n <mn>2</mn>\n </mfrac>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mn>1</mn>\n <mo>+</mo>\n <mi>ε</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $\\frac{1}{2}(1+\\varepsilon )n$</annotation>\n </semantics></math>. It was shown that the conjecture holds for <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> if <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math> is even. In this paper, the same result is proved if <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math> is odd. As far as we know, this is the first result on the Overfull Conjecture for graphs of odd order and with a minimum degree constraint.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"106 2","pages":"322-351"},"PeriodicalIF":0.9000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The overfull conjecture on graphs of odd order and large minimum degree\",\"authors\":\"Songling Shan\",\"doi\":\"10.1002/jgt.23077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> be a simple graph with maximum degree <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Δ</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>G</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> ${\\\\rm{\\\\Delta }}(G)$</annotation>\\n </semantics></math>. A subgraph <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n <annotation> $H$</annotation>\\n </semantics></math> of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> is overfull if <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>∣</mo>\\n <mi>E</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>H</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>∣</mo>\\n <mo>></mo>\\n <mi>Δ</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>G</mi>\\n <mo>)</mo>\\n </mrow>\\n <mrow>\\n <mo>⌊</mo>\\n <mrow>\\n <mfrac>\\n <mn>1</mn>\\n <mn>2</mn>\\n </mfrac>\\n <mo>∣</mo>\\n <mi>V</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>H</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>∣</mo>\\n </mrow>\\n <mo>⌋</mo>\\n </mrow>\\n </mrow>\\n <annotation> $| E(H)| \\\\gt {\\\\rm{\\\\Delta }}(G)\\\\lfloor \\\\frac{1}{2}| V(H)| \\\\rfloor $</annotation>\\n </semantics></math>. Chetwynd and Hilton in 1986 conjectured that a graph <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> with <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Δ</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>G</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>></mo>\\n <mfrac>\\n <mn>1</mn>\\n <mn>3</mn>\\n </mfrac>\\n <mo>∣</mo>\\n <mi>V</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>G</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>∣</mo>\\n </mrow>\\n <annotation> ${\\\\rm{\\\\Delta }}(G)\\\\gt \\\\frac{1}{3}| V(G)| $</annotation>\\n </semantics></math> has chromatic index <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Δ</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>G</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> ${\\\\rm{\\\\Delta }}(G)$</annotation>\\n </semantics></math> if and only if <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> contains no overfull subgraph. Let <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>0</mn>\\n <mo><</mo>\\n <mi>ε</mi>\\n <mo><</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation> $0\\\\lt \\\\varepsilon \\\\lt 1$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math> be sufficiently large, and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> be graph on <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math> vertices with minimum degree at least <span></span><math>\\n <semantics>\\n <mrow>\\n <mfrac>\\n <mn>1</mn>\\n <mn>2</mn>\\n </mfrac>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mn>1</mn>\\n <mo>+</mo>\\n <mi>ε</mi>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation> $\\\\frac{1}{2}(1+\\\\varepsilon )n$</annotation>\\n </semantics></math>. It was shown that the conjecture holds for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> if <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math> is even. In this paper, the same result is proved if <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math> is odd. As far as we know, this is the first result on the Overfull Conjecture for graphs of odd order and with a minimum degree constraint.</p>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"106 2\",\"pages\":\"322-351\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23077\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23077","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用