奇数阶大最小度图的过满猜想

IF 0.9 3区 数学 Q2 MATHEMATICS
Songling Shan
{"title":"奇数阶大最小度图的过满猜想","authors":"Songling Shan","doi":"10.1002/jgt.23077","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> be a simple graph with maximum degree <span></span><math>\n <semantics>\n <mrow>\n <mi>Δ</mi>\n <mrow>\n <mo>(</mo>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${\\rm{\\Delta }}(G)$</annotation>\n </semantics></math>. A subgraph <span></span><math>\n <semantics>\n <mrow>\n <mi>H</mi>\n </mrow>\n <annotation> $H$</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is overfull if <span></span><math>\n <semantics>\n <mrow>\n <mo>∣</mo>\n <mi>E</mi>\n <mrow>\n <mo>(</mo>\n <mi>H</mi>\n <mo>)</mo>\n </mrow>\n <mo>∣</mo>\n <mo>&gt;</mo>\n <mi>Δ</mi>\n <mrow>\n <mo>(</mo>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n <mrow>\n <mo>⌊</mo>\n <mrow>\n <mfrac>\n <mn>1</mn>\n <mn>2</mn>\n </mfrac>\n <mo>∣</mo>\n <mi>V</mi>\n <mrow>\n <mo>(</mo>\n <mi>H</mi>\n <mo>)</mo>\n </mrow>\n <mo>∣</mo>\n </mrow>\n <mo>⌋</mo>\n </mrow>\n </mrow>\n <annotation> $| E(H)| \\gt {\\rm{\\Delta }}(G)\\lfloor \\frac{1}{2}| V(H)| \\rfloor $</annotation>\n </semantics></math>. Chetwynd and Hilton in 1986 conjectured that a graph <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <mi>Δ</mi>\n <mrow>\n <mo>(</mo>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n <mo>&gt;</mo>\n <mfrac>\n <mn>1</mn>\n <mn>3</mn>\n </mfrac>\n <mo>∣</mo>\n <mi>V</mi>\n <mrow>\n <mo>(</mo>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n <mo>∣</mo>\n </mrow>\n <annotation> ${\\rm{\\Delta }}(G)\\gt \\frac{1}{3}| V(G)| $</annotation>\n </semantics></math> has chromatic index <span></span><math>\n <semantics>\n <mrow>\n <mi>Δ</mi>\n <mrow>\n <mo>(</mo>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${\\rm{\\Delta }}(G)$</annotation>\n </semantics></math> if and only if <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> contains no overfull subgraph. Let <span></span><math>\n <semantics>\n <mrow>\n <mn>0</mn>\n <mo>&lt;</mo>\n <mi>ε</mi>\n <mo>&lt;</mo>\n <mn>1</mn>\n </mrow>\n <annotation> $0\\lt \\varepsilon \\lt 1$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math> be sufficiently large, and <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> be graph on <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math> vertices with minimum degree at least <span></span><math>\n <semantics>\n <mrow>\n <mfrac>\n <mn>1</mn>\n <mn>2</mn>\n </mfrac>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mn>1</mn>\n <mo>+</mo>\n <mi>ε</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $\\frac{1}{2}(1+\\varepsilon )n$</annotation>\n </semantics></math>. It was shown that the conjecture holds for <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> if <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math> is even. In this paper, the same result is proved if <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math> is odd. As far as we know, this is the first result on the Overfull Conjecture for graphs of odd order and with a minimum degree constraint.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"106 2","pages":"322-351"},"PeriodicalIF":0.9000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The overfull conjecture on graphs of odd order and large minimum degree\",\"authors\":\"Songling Shan\",\"doi\":\"10.1002/jgt.23077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> be a simple graph with maximum degree <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Δ</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>G</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> ${\\\\rm{\\\\Delta }}(G)$</annotation>\\n </semantics></math>. A subgraph <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n <annotation> $H$</annotation>\\n </semantics></math> of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> is overfull if <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>∣</mo>\\n <mi>E</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>H</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>∣</mo>\\n <mo>&gt;</mo>\\n <mi>Δ</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>G</mi>\\n <mo>)</mo>\\n </mrow>\\n <mrow>\\n <mo>⌊</mo>\\n <mrow>\\n <mfrac>\\n <mn>1</mn>\\n <mn>2</mn>\\n </mfrac>\\n <mo>∣</mo>\\n <mi>V</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>H</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>∣</mo>\\n </mrow>\\n <mo>⌋</mo>\\n </mrow>\\n </mrow>\\n <annotation> $| E(H)| \\\\gt {\\\\rm{\\\\Delta }}(G)\\\\lfloor \\\\frac{1}{2}| V(H)| \\\\rfloor $</annotation>\\n </semantics></math>. Chetwynd and Hilton in 1986 conjectured that a graph <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> with <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Δ</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>G</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>&gt;</mo>\\n <mfrac>\\n <mn>1</mn>\\n <mn>3</mn>\\n </mfrac>\\n <mo>∣</mo>\\n <mi>V</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>G</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>∣</mo>\\n </mrow>\\n <annotation> ${\\\\rm{\\\\Delta }}(G)\\\\gt \\\\frac{1}{3}| V(G)| $</annotation>\\n </semantics></math> has chromatic index <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Δ</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>G</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> ${\\\\rm{\\\\Delta }}(G)$</annotation>\\n </semantics></math> if and only if <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> contains no overfull subgraph. Let <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>0</mn>\\n <mo>&lt;</mo>\\n <mi>ε</mi>\\n <mo>&lt;</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation> $0\\\\lt \\\\varepsilon \\\\lt 1$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math> be sufficiently large, and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> be graph on <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math> vertices with minimum degree at least <span></span><math>\\n <semantics>\\n <mrow>\\n <mfrac>\\n <mn>1</mn>\\n <mn>2</mn>\\n </mfrac>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mn>1</mn>\\n <mo>+</mo>\\n <mi>ε</mi>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation> $\\\\frac{1}{2}(1+\\\\varepsilon )n$</annotation>\\n </semantics></math>. It was shown that the conjecture holds for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> if <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math> is even. In this paper, the same result is proved if <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math> is odd. As far as we know, this is the first result on the Overfull Conjecture for graphs of odd order and with a minimum degree constraint.</p>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"106 2\",\"pages\":\"322-351\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23077\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23077","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设 G$G$ 是一个简单图,其最大度数为 Δ(G)${rm\{Delta }}(G)$ 。如果∣E(H)∣>Δ(G)⌊12∣V(H)∣⌋$| E(H)| \gt {\rm{\Delta }}(G)\lfloor \frac{1}{2}| V(H)| \rfloor $,则 G$G$ 的子图 H$H$ 是过满的。Chetwynd 和 Hilton 在 1986 年猜想,当且仅当 G$G$ 不包含超全子图时,具有 Δ(G)>13∣V(G)∣${rm\{Delta }}(G)\gt \frac{1}{3}| V(G)| $ 的图 G$G$ 才有色度指数 Δ(G)${rm\{Delta }}(G)$ 。设 0<ε<1$0\lt \varepsilon \lt 1$,n$n$足够大,且 G$G$ 是 n$n$ 个顶点上的图,其最小度至少为 12(1+ε)n$frac{1}{2}(1+\varepsilon )n$ 。研究表明,如果 n$n$ 是偶数,猜想对 G$G$ 成立。在本文中,如果 n$n$ 是奇数,同样的结果也会被证明。据我们所知,这是第一个关于奇数阶且有最小度约束的图的 Overfull 猜想的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The overfull conjecture on graphs of odd order and large minimum degree

Let G $G$ be a simple graph with maximum degree Δ ( G ) ${\rm{\Delta }}(G)$ . A subgraph H $H$ of G $G$ is overfull if E ( H ) > Δ ( G ) 1 2 V ( H ) $| E(H)| \gt {\rm{\Delta }}(G)\lfloor \frac{1}{2}| V(H)| \rfloor $ . Chetwynd and Hilton in 1986 conjectured that a graph G $G$ with Δ ( G ) > 1 3 V ( G ) ${\rm{\Delta }}(G)\gt \frac{1}{3}| V(G)| $ has chromatic index Δ ( G ) ${\rm{\Delta }}(G)$ if and only if G $G$ contains no overfull subgraph. Let 0 < ε < 1 $0\lt \varepsilon \lt 1$ , n $n$ be sufficiently large, and G $G$ be graph on n $n$ vertices with minimum degree at least 1 2 ( 1 + ε ) n $\frac{1}{2}(1+\varepsilon )n$ . It was shown that the conjecture holds for G $G$ if n $n$ is even. In this paper, the same result is proved if n $n$ is odd. As far as we know, this is the first result on the Overfull Conjecture for graphs of odd order and with a minimum degree constraint.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信