关于树为未成年人的树分解

Pub Date : 2024-02-11 DOI:10.1002/jgt.23083
Pablo Blanco, Linda Cook, Meike Hatzel, Claire Hilaire, Freddie Illingworth, Rose McCarty
{"title":"关于树为未成年人的树分解","authors":"Pablo Blanco,&nbsp;Linda Cook,&nbsp;Meike Hatzel,&nbsp;Claire Hilaire,&nbsp;Freddie Illingworth,&nbsp;Rose McCarty","doi":"10.1002/jgt.23083","DOIUrl":null,"url":null,"abstract":"<p>In 2019, Dvořák asked whether every connected graph <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> has a tree decomposition <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>T</mi>\n \n <mo>,</mo>\n \n <mi>B</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n <annotation> $(T,{\\rm{ {\\mathcal B} }})$</annotation>\n </semantics></math> so that <span></span><math>\n <semantics>\n <mrow>\n <mi>T</mi>\n </mrow>\n <annotation> $T$</annotation>\n </semantics></math> is a subgraph of <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> and the width of <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>T</mi>\n \n <mo>,</mo>\n \n <mi>B</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n <annotation> $(T,{\\rm{ {\\mathcal B} }})$</annotation>\n </semantics></math> is bounded by a function of the treewidth of <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>. We prove that this is false, even when <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> has treewidth 2 and <span></span><math>\n <semantics>\n <mrow>\n <mi>T</mi>\n </mrow>\n <annotation> $T$</annotation>\n </semantics></math> is allowed to be a minor of <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23083","citationCount":"0","resultStr":"{\"title\":\"On tree decompositions whose trees are minors\",\"authors\":\"Pablo Blanco,&nbsp;Linda Cook,&nbsp;Meike Hatzel,&nbsp;Claire Hilaire,&nbsp;Freddie Illingworth,&nbsp;Rose McCarty\",\"doi\":\"10.1002/jgt.23083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In 2019, Dvořák asked whether every connected graph <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> has a tree decomposition <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>T</mi>\\n \\n <mo>,</mo>\\n \\n <mi>B</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n <annotation> $(T,{\\\\rm{ {\\\\mathcal B} }})$</annotation>\\n </semantics></math> so that <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>T</mi>\\n </mrow>\\n <annotation> $T$</annotation>\\n </semantics></math> is a subgraph of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> and the width of <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>T</mi>\\n \\n <mo>,</mo>\\n \\n <mi>B</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n <annotation> $(T,{\\\\rm{ {\\\\mathcal B} }})$</annotation>\\n </semantics></math> is bounded by a function of the treewidth of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math>. We prove that this is false, even when <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> has treewidth 2 and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>T</mi>\\n </mrow>\\n <annotation> $T$</annotation>\\n </semantics></math> is allowed to be a minor of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23083\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23083\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

2019 年,德沃夏克提出了一个问题:是否每个连通图 G$G$ 都有一个树分解 (T,B)$(T,{\rm{ {\mathcal B} }})$,从而 T$T$ 是 G$G$ 的子图,并且 (T,B)$(T,{\rm{ {\mathcal B} }})$ 的宽度受 G$G$ 树宽的函数约束?我们证明,即使 G$G$ 的树宽为 2 且允许 T$T$ 是 G$G$ 的次要图,这也是错误的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On tree decompositions whose trees are minors

分享
查看原文
On tree decompositions whose trees are minors

In 2019, Dvořák asked whether every connected graph G $G$ has a tree decomposition ( T , B ) $(T,{\rm{ {\mathcal B} }})$ so that T $T$ is a subgraph of G $G$ and the width of ( T , B ) $(T,{\rm{ {\mathcal B} }})$ is bounded by a function of the treewidth of G $G$ . We prove that this is false, even when G $G$ has treewidth 2 and T $T$ is allowed to be a minor of G $G$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信