{"title":"铜改性铁锰磁性汞吸附剂和抗二氧化硫特性","authors":"Yu Shang, Ruhao Gong, Yufeng Duan, Qiang Zhou","doi":"10.1002/apj.3045","DOIUrl":null,"url":null,"abstract":"<p>A series of Fe<sub>6</sub>Mn<sub>1</sub>Cu<sub>x</sub> adsorbents for mercury removal were prepared by using co-precipitation and impregnation methods. The performance of mercury adsorption and anti-SO<sub>2</sub> characteristic was studied in a fixed-bed experimental system. The effect of Cu doping amount, reaction temperature, and flue gas components on mercury removal was investigated. The mercury species on the spent adsorbent was analyzed through Hg-TPD test. The physical–chemical features were characterized by using the N<sub>2</sub> adsorption/desorption, VSM, XPS, and XRD. It was found that the Fe<sub>6</sub>Mn<sub>1</sub>Cu<sub>0.4</sub> exhibited a high performance of mercury adsorption and well magnetic property and good sulfur resistance. Under high concentration of SO<sub>2</sub>, the average adsorption efficiency of Fe<sub>6</sub>Mn<sub>1</sub>Cu<sub>0.4</sub> adsorbent achieved 99%. Cu modification optimized the pore structure and improved the mercury removal performance as well as SO<sub>2</sub> resistance. The XPS analysis indicated that Mn<sup>4+</sup> was the main form that played an important role in oxidizing Hg<sup>0</sup>, as a result of decrement of Mn<sup>4+</sup> after mercury adsorption. Mercury adsorbed on the spent adsorbent was HgO and HgSO<sub>4</sub>.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cu-modified Fe-Mn magnetic mercury adsorbent and anti-SO2 characteristic\",\"authors\":\"Yu Shang, Ruhao Gong, Yufeng Duan, Qiang Zhou\",\"doi\":\"10.1002/apj.3045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A series of Fe<sub>6</sub>Mn<sub>1</sub>Cu<sub>x</sub> adsorbents for mercury removal were prepared by using co-precipitation and impregnation methods. The performance of mercury adsorption and anti-SO<sub>2</sub> characteristic was studied in a fixed-bed experimental system. The effect of Cu doping amount, reaction temperature, and flue gas components on mercury removal was investigated. The mercury species on the spent adsorbent was analyzed through Hg-TPD test. The physical–chemical features were characterized by using the N<sub>2</sub> adsorption/desorption, VSM, XPS, and XRD. It was found that the Fe<sub>6</sub>Mn<sub>1</sub>Cu<sub>0.4</sub> exhibited a high performance of mercury adsorption and well magnetic property and good sulfur resistance. Under high concentration of SO<sub>2</sub>, the average adsorption efficiency of Fe<sub>6</sub>Mn<sub>1</sub>Cu<sub>0.4</sub> adsorbent achieved 99%. Cu modification optimized the pore structure and improved the mercury removal performance as well as SO<sub>2</sub> resistance. The XPS analysis indicated that Mn<sup>4+</sup> was the main form that played an important role in oxidizing Hg<sup>0</sup>, as a result of decrement of Mn<sup>4+</sup> after mercury adsorption. Mercury adsorbed on the spent adsorbent was HgO and HgSO<sub>4</sub>.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/apj.3045\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/apj.3045","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Cu-modified Fe-Mn magnetic mercury adsorbent and anti-SO2 characteristic
A series of Fe6Mn1Cux adsorbents for mercury removal were prepared by using co-precipitation and impregnation methods. The performance of mercury adsorption and anti-SO2 characteristic was studied in a fixed-bed experimental system. The effect of Cu doping amount, reaction temperature, and flue gas components on mercury removal was investigated. The mercury species on the spent adsorbent was analyzed through Hg-TPD test. The physical–chemical features were characterized by using the N2 adsorption/desorption, VSM, XPS, and XRD. It was found that the Fe6Mn1Cu0.4 exhibited a high performance of mercury adsorption and well magnetic property and good sulfur resistance. Under high concentration of SO2, the average adsorption efficiency of Fe6Mn1Cu0.4 adsorbent achieved 99%. Cu modification optimized the pore structure and improved the mercury removal performance as well as SO2 resistance. The XPS analysis indicated that Mn4+ was the main form that played an important role in oxidizing Hg0, as a result of decrement of Mn4+ after mercury adsorption. Mercury adsorbed on the spent adsorbent was HgO and HgSO4.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.