数学中的价值判断:G. H. 哈代与数学定理的(非)严肃性

IF 0.5 3区 哲学 0 PHILOSOPHY
Simon Weisgerber
{"title":"数学中的价值判断:G. H. 哈代与数学定理的(非)严肃性","authors":"Simon Weisgerber","doi":"10.1007/s10516-023-09705-y","DOIUrl":null,"url":null,"abstract":"<p>One of the general criteria G. H. Hardy identifies and discusses in his famous essay <i>A Mathematician’s Apology</i>, Cambridge University Press, Cambridge, 1940) by which a mathematician’s patterns must be judged is <i>seriousness</i>. This article focuses on one of Hardy’s examples of a non-serious theorem, namely that 8712 and 9801 are the only numbers below 10000 which are integral multiples of their reversals, in the sense that <span>\\(8712=4\\cdot 2178\\)</span>, and <span>\\(9801=9\\cdot 1089\\)</span>. In the context of a discussion of <i>generality</i>, which he considers an essential quality of seriousness, he explains that there is nothing in this example which “appeals much to a mathematician” and that it is “not capable of any significant generalization.” Interestingly, since the publication of the <i>Apology</i>, more than a dozen papers—including one by the renowned mathematician Neil Sloane—have been published that discuss generalizations of Hardy’s example. By identifying the most important aspect of Hardy’s notion of generality, it is argued that, contrary to the views of several researchers, Hardy’s claim regarding the non-capability of any significant generalization is still tenable. Furthermore, this case study is presented and discussed as an example of the multifaceted nature of <i>mathematical interest</i>.</p>","PeriodicalId":44799,"journal":{"name":"Axiomathes","volume":"74 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Value Judgments in Mathematics: G. H. Hardy and the (Non-)seriousness of Mathematical Theorems\",\"authors\":\"Simon Weisgerber\",\"doi\":\"10.1007/s10516-023-09705-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>One of the general criteria G. H. Hardy identifies and discusses in his famous essay <i>A Mathematician’s Apology</i>, Cambridge University Press, Cambridge, 1940) by which a mathematician’s patterns must be judged is <i>seriousness</i>. This article focuses on one of Hardy’s examples of a non-serious theorem, namely that 8712 and 9801 are the only numbers below 10000 which are integral multiples of their reversals, in the sense that <span>\\\\(8712=4\\\\cdot 2178\\\\)</span>, and <span>\\\\(9801=9\\\\cdot 1089\\\\)</span>. In the context of a discussion of <i>generality</i>, which he considers an essential quality of seriousness, he explains that there is nothing in this example which “appeals much to a mathematician” and that it is “not capable of any significant generalization.” Interestingly, since the publication of the <i>Apology</i>, more than a dozen papers—including one by the renowned mathematician Neil Sloane—have been published that discuss generalizations of Hardy’s example. By identifying the most important aspect of Hardy’s notion of generality, it is argued that, contrary to the views of several researchers, Hardy’s claim regarding the non-capability of any significant generalization is still tenable. Furthermore, this case study is presented and discussed as an example of the multifaceted nature of <i>mathematical interest</i>.</p>\",\"PeriodicalId\":44799,\"journal\":{\"name\":\"Axiomathes\",\"volume\":\"74 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Axiomathes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10516-023-09705-y\",\"RegionNum\":3,\"RegionCategory\":\"哲学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"PHILOSOPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Axiomathes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10516-023-09705-y","RegionNum":3,"RegionCategory":"哲学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"PHILOSOPHY","Score":null,"Total":0}
引用次数: 0

摘要

哈代(G. H. Hardy)在其著名论文《数学家的道歉》(A Mathematician's Apology, Cambridge University Press, Cambridge, 1940)中指出并讨论了判断数学家模式的一般标准之一,即严肃性。本文重点讨论哈代的一个非严肃性定理的例子,即8712和9801是10000以下唯一与其相反数成整数倍的数,即(8712=4÷cdot 2178)和(9801=9÷cdot 1089)。在讨论普遍性(他认为普遍性是严肃性的基本品质)时,他解释说,这个例子中没有任何东西 "对数学家有很大吸引力",它 "不可能有任何重要的普遍性"。有趣的是,自《道歉》出版以来,已有十多篇论文,包括著名数学家尼尔-斯隆(Neil Sloane)发表的一篇论文,讨论了哈代的例子的一般化问题。通过确定哈代的概括性概念中最重要的方面,本文认为,与一些研究者的观点相反,哈代关于任何重要的概括都不具有能力的说法仍然是站得住脚的。此外,本案例研究作为数学兴趣多面性的一个例子进行了介绍和讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Value Judgments in Mathematics: G. H. Hardy and the (Non-)seriousness of Mathematical Theorems

Value Judgments in Mathematics: G. H. Hardy and the (Non-)seriousness of Mathematical Theorems

One of the general criteria G. H. Hardy identifies and discusses in his famous essay A Mathematician’s Apology, Cambridge University Press, Cambridge, 1940) by which a mathematician’s patterns must be judged is seriousness. This article focuses on one of Hardy’s examples of a non-serious theorem, namely that 8712 and 9801 are the only numbers below 10000 which are integral multiples of their reversals, in the sense that \(8712=4\cdot 2178\), and \(9801=9\cdot 1089\). In the context of a discussion of generality, which he considers an essential quality of seriousness, he explains that there is nothing in this example which “appeals much to a mathematician” and that it is “not capable of any significant generalization.” Interestingly, since the publication of the Apology, more than a dozen papers—including one by the renowned mathematician Neil Sloane—have been published that discuss generalizations of Hardy’s example. By identifying the most important aspect of Hardy’s notion of generality, it is argued that, contrary to the views of several researchers, Hardy’s claim regarding the non-capability of any significant generalization is still tenable. Furthermore, this case study is presented and discussed as an example of the multifaceted nature of mathematical interest.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Axiomathes
Axiomathes PHILOSOPHY-
CiteScore
1.10
自引率
0.00%
发文量
34
期刊介绍: Axiomathes: Where Science Meets PhilosophyResearch in many fields confirms that science is changing its nature. Natural science, cognitive and social sciences, mathematics and philosophy (i.e., the set of tools developed to understand and model reality) exceed the conceptual framework introduced by Galileo and Descartes. Complexity and chaos; network dynamics; anticipatory systems; qualitative aspects of experience (intentionality, for example); emergent properties and objects; forward, upward, and downward causation: all portend a new scientific agenda.Axiomathes publishes studies of evolving ideas, perspectives, and methods in science, mathematics, and philosophy. Many aspects of this dawning are unknown: there will be startlingly good ideas, and many blind-alleys. We welcome this ferment. While Axiomathes’ scope is left open, scholarly depth, quality and precision of presentation remain prerequisites for publication.Axiomathes welcomes submissions, regardless of the tradition, school of thought, or disciplinary background from which they derive. The members of the journal’s editorial board reflect this approach in the diversity of their affiliations and interests. Axiomathes includes one issue per year under the title Epistemologia. Please see the tab on your right for more information about this joint publication.All submissions are subjected to double-blind peer review, the average peer review time is 3 months.Axiomathes publishes:·       Research articles, presenting original ideas and results.·       Review articles, which comprehensively synthesize and critically assess recent, original works or a selected collection of thematically related books.·       Commentaries, brief articles that comment on articles published previously.·       Book symposia, in which commentators are invited to debate an influential book with the author, who answers with a concluding reply.·       Special issues, in which an expert collaborates with the journal as a guest editor, in order to identify an interesting topic in science, mathematics or philosophy, and interacts with the selected contributors, being in charge of a whole issue of the journal. Axiomathes invites potential guest-editors, who might be interested in collecting and editing such special issue, to contact the Editor in order to discuss the feasibility of the project.·       Focused debates, collecting submissions and invited articles around a particular theme, as part of a normal issue of the journal.·       Authors wishing to submit a reply article, or a proposal for a review article, a book symposium, a special issue or a focused debate, are invited to contact the Editor for further information.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信